L(s) = 1 | − 2·3-s + 2·7-s + 9-s + 6·11-s − 4·13-s − 19-s − 4·21-s + 3·23-s + 4·27-s + 8·31-s − 12·33-s + 37-s + 8·39-s + 3·41-s − 43-s − 6·47-s − 3·49-s − 9·53-s + 2·57-s − 3·59-s + 14·61-s + 2·63-s − 4·67-s − 6·69-s − 6·71-s + 11·73-s + 12·77-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 0.755·7-s + 1/3·9-s + 1.80·11-s − 1.10·13-s − 0.229·19-s − 0.872·21-s + 0.625·23-s + 0.769·27-s + 1.43·31-s − 2.08·33-s + 0.164·37-s + 1.28·39-s + 0.468·41-s − 0.152·43-s − 0.875·47-s − 3/7·49-s − 1.23·53-s + 0.264·57-s − 0.390·59-s + 1.79·61-s + 0.251·63-s − 0.488·67-s − 0.722·69-s − 0.712·71-s + 1.28·73-s + 1.36·77-s + ⋯ |
Λ(s)=(=(3700s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3700s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.367872819 |
L(21) |
≈ |
1.367872819 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 37 | 1−T |
good | 3 | 1+2T+pT2 |
| 7 | 1−2T+pT2 |
| 11 | 1−6T+pT2 |
| 13 | 1+4T+pT2 |
| 17 | 1+pT2 |
| 19 | 1+T+pT2 |
| 23 | 1−3T+pT2 |
| 29 | 1+pT2 |
| 31 | 1−8T+pT2 |
| 41 | 1−3T+pT2 |
| 43 | 1+T+pT2 |
| 47 | 1+6T+pT2 |
| 53 | 1+9T+pT2 |
| 59 | 1+3T+pT2 |
| 61 | 1−14T+pT2 |
| 67 | 1+4T+pT2 |
| 71 | 1+6T+pT2 |
| 73 | 1−11T+pT2 |
| 79 | 1+T+pT2 |
| 83 | 1+pT2 |
| 89 | 1−12T+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.506863405659471229977930285776, −7.74407899803003989638143010044, −6.67804883401462601781504454328, −6.50108919407440481405845477859, −5.46337353224654334009786014845, −4.77402321633752819724827727350, −4.22545534036621367303405162766, −2.99256630433841580776509883235, −1.73344867858359236084414018866, −0.75607631634855246623818726703,
0.75607631634855246623818726703, 1.73344867858359236084414018866, 2.99256630433841580776509883235, 4.22545534036621367303405162766, 4.77402321633752819724827727350, 5.46337353224654334009786014845, 6.50108919407440481405845477859, 6.67804883401462601781504454328, 7.74407899803003989638143010044, 8.506863405659471229977930285776