Properties

Label 2-3700-1.1-c1-0-10
Degree $2$
Conductor $3700$
Sign $1$
Analytic cond. $29.5446$
Root an. cond. $5.43549$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s − 2·9-s − 3·11-s + 4·13-s − 4·19-s − 21-s + 5·27-s + 2·31-s + 3·33-s − 37-s − 4·39-s + 3·41-s − 2·43-s − 3·47-s − 6·49-s + 9·53-s + 4·57-s + 2·61-s − 2·63-s + 4·67-s + 15·71-s + 7·73-s − 3·77-s − 10·79-s + 81-s + 3·83-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s − 2/3·9-s − 0.904·11-s + 1.10·13-s − 0.917·19-s − 0.218·21-s + 0.962·27-s + 0.359·31-s + 0.522·33-s − 0.164·37-s − 0.640·39-s + 0.468·41-s − 0.304·43-s − 0.437·47-s − 6/7·49-s + 1.23·53-s + 0.529·57-s + 0.256·61-s − 0.251·63-s + 0.488·67-s + 1.78·71-s + 0.819·73-s − 0.341·77-s − 1.12·79-s + 1/9·81-s + 0.329·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3700\)    =    \(2^{2} \cdot 5^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(29.5446\)
Root analytic conductor: \(5.43549\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3700,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.223425879\)
\(L(\frac12)\) \(\approx\) \(1.223425879\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
37 \( 1 + T \)
good3 \( 1 + T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 + 3 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 15 T + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 3 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.320566320344959555589170558707, −8.063386549062472212301129813398, −6.88610542134705476043905926803, −6.23303933687777995129974330697, −5.53161304223054046550311903611, −4.89610125391740010196132513501, −3.94769425088528710321117034658, −2.96736714350579454573712100915, −1.98523078966066915455111948391, −0.65226138130976440323790882395, 0.65226138130976440323790882395, 1.98523078966066915455111948391, 2.96736714350579454573712100915, 3.94769425088528710321117034658, 4.89610125391740010196132513501, 5.53161304223054046550311903611, 6.23303933687777995129974330697, 6.88610542134705476043905926803, 8.063386549062472212301129813398, 8.320566320344959555589170558707

Graph of the $Z$-function along the critical line