L(s) = 1 | + (0.0678 + 1.41i)2-s + (1.19 − 1.19i)3-s + (−1.99 + 0.191i)4-s + (0.672 + 0.672i)5-s + (1.77 + 1.60i)6-s + 1.79i·7-s + (−0.405 − 2.79i)8-s + 0.135i·9-s + (−0.903 + 0.994i)10-s + (2.49 + 2.49i)11-s + (−2.15 + 2.61i)12-s + (−0.0311 + 0.0311i)13-s + (−2.54 + 0.122i)14-s + 1.60·15-s + (3.92 − 0.762i)16-s + 4.24·17-s + ⋯ |
L(s) = 1 | + (0.0479 + 0.998i)2-s + (0.690 − 0.690i)3-s + (−0.995 + 0.0958i)4-s + (0.300 + 0.300i)5-s + (0.723 + 0.657i)6-s + 0.680i·7-s + (−0.143 − 0.989i)8-s + 0.0452i·9-s + (−0.285 + 0.314i)10-s + (0.753 + 0.753i)11-s + (−0.621 + 0.753i)12-s + (−0.00862 + 0.00862i)13-s + (−0.679 + 0.0326i)14-s + 0.415·15-s + (0.981 − 0.190i)16-s + 1.02·17-s + ⋯ |
Λ(s)=(=(368s/2ΓC(s)L(s)(0.199−0.979i)Λ(2−s)
Λ(s)=(=(368s/2ΓC(s+1/2)L(s)(0.199−0.979i)Λ(1−s)
Degree: |
2 |
Conductor: |
368
= 24⋅23
|
Sign: |
0.199−0.979i
|
Analytic conductor: |
2.93849 |
Root analytic conductor: |
1.71420 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ368(277,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 368, ( :1/2), 0.199−0.979i)
|
Particular Values
L(1) |
≈ |
1.28382+1.04885i |
L(21) |
≈ |
1.28382+1.04885i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.0678−1.41i)T |
| 23 | 1−iT |
good | 3 | 1+(−1.19+1.19i)T−3iT2 |
| 5 | 1+(−0.672−0.672i)T+5iT2 |
| 7 | 1−1.79iT−7T2 |
| 11 | 1+(−2.49−2.49i)T+11iT2 |
| 13 | 1+(0.0311−0.0311i)T−13iT2 |
| 17 | 1−4.24T+17T2 |
| 19 | 1+(0.864−0.864i)T−19iT2 |
| 29 | 1+(1.05−1.05i)T−29iT2 |
| 31 | 1+2.27T+31T2 |
| 37 | 1+(1.42+1.42i)T+37iT2 |
| 41 | 1+8.94iT−41T2 |
| 43 | 1+(2.22+2.22i)T+43iT2 |
| 47 | 1+9.40T+47T2 |
| 53 | 1+(4.89+4.89i)T+53iT2 |
| 59 | 1+(6.23+6.23i)T+59iT2 |
| 61 | 1+(−0.841+0.841i)T−61iT2 |
| 67 | 1+(6.47−6.47i)T−67iT2 |
| 71 | 1+6.62iT−71T2 |
| 73 | 1−0.712iT−73T2 |
| 79 | 1−3.84T+79T2 |
| 83 | 1+(−7.62+7.62i)T−83iT2 |
| 89 | 1+5.80iT−89T2 |
| 97 | 1−19.5T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.02230366521081108296006123371, −10.39267735417888742822590002843, −9.438106423335808905963154272691, −8.637664998458569544234143550505, −7.75577752214399301138333055050, −6.97731692383333059481503328111, −6.03131221159274706970645825924, −4.93732226625301715783472475202, −3.45007524292191615862839947186, −1.89793299546158056440045377543,
1.24237843368814889930926872295, 3.09173358998269879976215077889, 3.81736409660597829717095700935, 4.87306541795887202561496966457, 6.19164318771774917535962864101, 7.84364334170134135350181184829, 8.839656851146901821863345447091, 9.476110109082315564893212242121, 10.18803114990468966862578101662, 11.11990163907156563569599653494