L(s) = 1 | + (0.586 − 1.28i)2-s + (−0.955 − 0.955i)3-s + (−1.31 − 1.51i)4-s + (2.38 − 2.38i)5-s + (−1.79 + 0.668i)6-s + 0.198i·7-s + (−2.71 + 0.801i)8-s − 1.17i·9-s + (−1.66 − 4.46i)10-s + (−0.110 + 0.110i)11-s + (−0.189 + 2.69i)12-s + (1.69 + 1.69i)13-s + (0.255 + 0.116i)14-s − 4.55·15-s + (−0.560 + 3.96i)16-s − 0.645·17-s + ⋯ |
L(s) = 1 | + (0.414 − 0.909i)2-s + (−0.551 − 0.551i)3-s + (−0.655 − 0.755i)4-s + (1.06 − 1.06i)5-s + (−0.730 + 0.273i)6-s + 0.0751i·7-s + (−0.959 + 0.283i)8-s − 0.391i·9-s + (−0.527 − 1.41i)10-s + (−0.0332 + 0.0332i)11-s + (−0.0548 + 0.778i)12-s + (0.469 + 0.469i)13-s + (0.0683 + 0.0311i)14-s − 1.17·15-s + (−0.140 + 0.990i)16-s − 0.156·17-s + ⋯ |
Λ(s)=(=(368s/2ΓC(s)L(s)(−0.968+0.249i)Λ(2−s)
Λ(s)=(=(368s/2ΓC(s+1/2)L(s)(−0.968+0.249i)Λ(1−s)
Degree: |
2 |
Conductor: |
368
= 24⋅23
|
Sign: |
−0.968+0.249i
|
Analytic conductor: |
2.93849 |
Root analytic conductor: |
1.71420 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ368(93,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 368, ( :1/2), −0.968+0.249i)
|
Particular Values
L(1) |
≈ |
0.180764−1.42656i |
L(21) |
≈ |
0.180764−1.42656i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.586+1.28i)T |
| 23 | 1+iT |
good | 3 | 1+(0.955+0.955i)T+3iT2 |
| 5 | 1+(−2.38+2.38i)T−5iT2 |
| 7 | 1−0.198iT−7T2 |
| 11 | 1+(0.110−0.110i)T−11iT2 |
| 13 | 1+(−1.69−1.69i)T+13iT2 |
| 17 | 1+0.645T+17T2 |
| 19 | 1+(−0.173−0.173i)T+19iT2 |
| 29 | 1+(−2.98−2.98i)T+29iT2 |
| 31 | 1+4.74T+31T2 |
| 37 | 1+(1.53−1.53i)T−37iT2 |
| 41 | 1+9.42iT−41T2 |
| 43 | 1+(2.46−2.46i)T−43iT2 |
| 47 | 1−10.2T+47T2 |
| 53 | 1+(−6.13+6.13i)T−53iT2 |
| 59 | 1+(−3.18+3.18i)T−59iT2 |
| 61 | 1+(−0.134−0.134i)T+61iT2 |
| 67 | 1+(−8.34−8.34i)T+67iT2 |
| 71 | 1+4.76iT−71T2 |
| 73 | 1+5.99iT−73T2 |
| 79 | 1+0.630T+79T2 |
| 83 | 1+(−0.711−0.711i)T+83iT2 |
| 89 | 1−13.8iT−89T2 |
| 97 | 1−7.33T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.14955077456721127353967655464, −10.17000291884966990754959481169, −9.194756439242296117925974763129, −8.686956655309904202576388988109, −6.82129959031254348166754811545, −5.81807626669412653849735642693, −5.17898518698007257239821517490, −3.87557437151970181617503925616, −2.09662749487150721203025885434, −0.981301979300453239216381280897,
2.63362742949133578597468971440, 4.01550127516265924013384224275, 5.32462426008327453783382615952, 5.93089512161384195400221652244, 6.84616403698496361766682963791, 7.86219118722677301398056688245, 9.099821422539995033835233247054, 10.11286204138324785339682327476, 10.72964279463568956841571981009, 11.74914242063312613049080738423