L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.258 + 0.965i)3-s + (−0.707 − 0.707i)6-s − 8-s + (−0.866 − 0.499i)9-s + (0.866 − 0.5i)11-s − 1.41i·13-s + (0.5 − 0.866i)16-s + (−0.707 − 1.22i)17-s + (0.866 − 0.5i)18-s + 0.999i·22-s + (−0.5 + 0.866i)23-s + (0.258 − 0.965i)24-s + (1.22 + 0.707i)26-s + (0.707 − 0.707i)27-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.258 + 0.965i)3-s + (−0.707 − 0.707i)6-s − 8-s + (−0.866 − 0.499i)9-s + (0.866 − 0.5i)11-s − 1.41i·13-s + (0.5 − 0.866i)16-s + (−0.707 − 1.22i)17-s + (0.866 − 0.5i)18-s + 0.999i·22-s + (−0.5 + 0.866i)23-s + (0.258 − 0.965i)24-s + (1.22 + 0.707i)26-s + (0.707 − 0.707i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.867 - 0.497i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.867 - 0.497i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6848184497\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6848184497\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.258 - 0.965i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + 1.41iT - T^{2} \) |
| 17 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + iT - T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + 1.41iT - T^{2} \) |
| 43 | \( 1 + iT - T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - iT - T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.704322636851057156185347668164, −8.133553596662552412830028586540, −7.33580918731076206492204484720, −6.54135527428846755460318992900, −5.78554728903816430919406079796, −5.30837713591894079531232036241, −4.16689867096360565351464375747, −3.38928022799992317417108140830, −2.59585889007618313845175639243, −0.50120586463911019264121723861,
1.30387791676171214020147488210, 1.86207091316215081724083812775, 2.68145551637028785903530516325, 3.90633695240009317066742914010, 4.74628024756371461509435249514, 6.08575198295146246605483768164, 6.39075136740648151890494883760, 7.02592359468127269693775342343, 8.084105209834677319800279233619, 8.797453199249667415789329070742