Properties

Label 2-3675-105.44-c0-0-6
Degree $2$
Conductor $3675$
Sign $0.867 - 0.497i$
Analytic cond. $1.83406$
Root an. cond. $1.35427$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)2-s + (−0.258 + 0.965i)3-s + (−0.707 − 0.707i)6-s − 8-s + (−0.866 − 0.499i)9-s + (0.866 − 0.5i)11-s − 1.41i·13-s + (0.5 − 0.866i)16-s + (−0.707 − 1.22i)17-s + (0.866 − 0.5i)18-s + 0.999i·22-s + (−0.5 + 0.866i)23-s + (0.258 − 0.965i)24-s + (1.22 + 0.707i)26-s + (0.707 − 0.707i)27-s + ⋯
L(s)  = 1  + (−0.5 + 0.866i)2-s + (−0.258 + 0.965i)3-s + (−0.707 − 0.707i)6-s − 8-s + (−0.866 − 0.499i)9-s + (0.866 − 0.5i)11-s − 1.41i·13-s + (0.5 − 0.866i)16-s + (−0.707 − 1.22i)17-s + (0.866 − 0.5i)18-s + 0.999i·22-s + (−0.5 + 0.866i)23-s + (0.258 − 0.965i)24-s + (1.22 + 0.707i)26-s + (0.707 − 0.707i)27-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.867 - 0.497i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.867 - 0.497i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3675\)    =    \(3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $0.867 - 0.497i$
Analytic conductor: \(1.83406\)
Root analytic conductor: \(1.35427\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3675} (2774, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3675,\ (\ :0),\ 0.867 - 0.497i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6848184497\)
\(L(\frac12)\) \(\approx\) \(0.6848184497\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.258 - 0.965i)T \)
5 \( 1 \)
7 \( 1 \)
good2 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
11 \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \)
13 \( 1 + 1.41iT - T^{2} \)
17 \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \)
19 \( 1 + (-0.5 - 0.866i)T^{2} \)
23 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
29 \( 1 + iT - T^{2} \)
31 \( 1 + (-0.5 + 0.866i)T^{2} \)
37 \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \)
41 \( 1 + 1.41iT - T^{2} \)
43 \( 1 + iT - T^{2} \)
47 \( 1 + (-0.5 - 0.866i)T^{2} \)
53 \( 1 + (-0.5 + 0.866i)T^{2} \)
59 \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \)
61 \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \)
67 \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \)
71 \( 1 - iT - T^{2} \)
73 \( 1 + (0.5 - 0.866i)T^{2} \)
79 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
83 \( 1 + T^{2} \)
89 \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.704322636851057156185347668164, −8.133553596662552412830028586540, −7.33580918731076206492204484720, −6.54135527428846755460318992900, −5.78554728903816430919406079796, −5.30837713591894079531232036241, −4.16689867096360565351464375747, −3.38928022799992317417108140830, −2.59585889007618313845175639243, −0.50120586463911019264121723861, 1.30387791676171214020147488210, 1.86207091316215081724083812775, 2.68145551637028785903530516325, 3.90633695240009317066742914010, 4.74628024756371461509435249514, 6.08575198295146246605483768164, 6.39075136740648151890494883760, 7.02592359468127269693775342343, 8.084105209834677319800279233619, 8.797453199249667415789329070742

Graph of the $Z$-function along the critical line