| L(s) = 1 | + (−0.866 + 0.5i)3-s + (0.5 + 0.866i)4-s + (0.499 − 0.866i)9-s + (−0.866 − 0.499i)12-s + i·13-s + (−0.499 + 0.866i)16-s + (0.5 − 0.866i)19-s + 0.999i·27-s + (1 + 1.73i)31-s + 0.999·36-s + (−0.866 − 0.5i)37-s + (−0.5 − 0.866i)39-s + 2i·43-s − 0.999i·48-s + (−0.866 + 0.5i)52-s + ⋯ |
| L(s) = 1 | + (−0.866 + 0.5i)3-s + (0.5 + 0.866i)4-s + (0.499 − 0.866i)9-s + (−0.866 − 0.499i)12-s + i·13-s + (−0.499 + 0.866i)16-s + (0.5 − 0.866i)19-s + 0.999i·27-s + (1 + 1.73i)31-s + 0.999·36-s + (−0.866 − 0.5i)37-s + (−0.5 − 0.866i)39-s + 2i·43-s − 0.999i·48-s + (−0.866 + 0.5i)52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.441 - 0.897i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.441 - 0.897i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9859213073\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9859213073\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| good | 2 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 - iT - T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - 2iT - T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + iT - T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.984767087519394013858337831238, −8.246527043961474102848346115722, −7.21253464960143543298550965015, −6.77880033856685841147471674128, −6.12057600771092268005644362242, −5.02764445749980491801074010514, −4.44999246186176198179348033402, −3.56070869084224192559535995863, −2.73657932803332693568753137616, −1.42156983889669302031478567055,
0.66246478570059125016810864412, 1.71567785294318915552831204670, 2.64389787921711101402887745290, 3.91130683483380075218868320430, 5.07587083301006102929593675467, 5.52187759384646165642743226718, 6.19194121835197976168501001974, 6.84418602362574487617387465763, 7.64698468749278219105202131006, 8.211653793453758075988065845458