L(s) = 1 | + (−0.965 + 0.258i)3-s + (−0.866 − 0.5i)4-s + (0.866 − 0.499i)9-s + (0.965 + 0.258i)12-s + (0.707 + 0.707i)13-s + (0.499 + 0.866i)16-s + (−0.866 − 1.5i)19-s + (−0.707 + 0.707i)27-s − 36-s + (−0.448 + 1.67i)37-s + (−0.866 − 0.500i)39-s + (−0.707 − 0.707i)48-s + (−0.258 − 0.965i)52-s + (1.22 + 1.22i)57-s + (1.5 − 0.866i)61-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.258i)3-s + (−0.866 − 0.5i)4-s + (0.866 − 0.499i)9-s + (0.965 + 0.258i)12-s + (0.707 + 0.707i)13-s + (0.499 + 0.866i)16-s + (−0.866 − 1.5i)19-s + (−0.707 + 0.707i)27-s − 36-s + (−0.448 + 1.67i)37-s + (−0.866 − 0.500i)39-s + (−0.707 − 0.707i)48-s + (−0.258 − 0.965i)52-s + (1.22 + 1.22i)57-s + (1.5 − 0.866i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.922 + 0.385i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.922 + 0.385i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6921426928\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6921426928\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.965 - 0.258i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 17 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 19 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.448 - 1.67i)T + (-0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-1.67 + 0.448i)T + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-0.965 + 0.258i)T + (0.866 - 0.5i)T^{2} \) |
| 79 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.812341544505657164869732993522, −8.094096400282238378094985362225, −6.73986589130961812055589847927, −6.54073054508696431030262245623, −5.55064181541332301803340673875, −4.85215911155286880652153373418, −4.32979611693467993705425677401, −3.45532558182185095089451475552, −1.88784294735161517034862152344, −0.69951722517531344810381099825,
0.846542425733364151394629196099, 2.16668199259341961826649755866, 3.64871896448099961313709986396, 4.05601054249385770119369013870, 5.14685568656688517958600273029, 5.66409435115214759723070922478, 6.42729950473977447304276976674, 7.34994480537380617049862077675, 8.056959363510875456466744630956, 8.574844407386863013690844226227