Properties

Label 2-3675-1.1-c1-0-19
Degree $2$
Conductor $3675$
Sign $1$
Analytic cond. $29.3450$
Root an. cond. $5.41710$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.74·2-s + 3-s + 5.55·4-s − 2.74·6-s − 9.78·8-s + 9-s − 4.44·11-s + 5.55·12-s − 3.61·13-s + 15.7·16-s + 4.94·17-s − 2.74·18-s + 2.74·19-s + 12.2·22-s + 4.36·23-s − 9.78·24-s + 9.94·26-s + 27-s + 0.660·29-s + 1.25·31-s − 23.7·32-s − 4.44·33-s − 13.6·34-s + 5.55·36-s + 2.16·37-s − 7.54·38-s − 3.61·39-s + ⋯
L(s)  = 1  − 1.94·2-s + 0.577·3-s + 2.77·4-s − 1.12·6-s − 3.45·8-s + 0.333·9-s − 1.34·11-s + 1.60·12-s − 1.00·13-s + 3.94·16-s + 1.19·17-s − 0.647·18-s + 0.629·19-s + 2.60·22-s + 0.909·23-s − 1.99·24-s + 1.95·26-s + 0.192·27-s + 0.122·29-s + 0.225·31-s − 4.20·32-s − 0.773·33-s − 2.33·34-s + 0.926·36-s + 0.356·37-s − 1.22·38-s − 0.579·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3675\)    =    \(3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(29.3450\)
Root analytic conductor: \(5.41710\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3675,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7941336339\)
\(L(\frac12)\) \(\approx\) \(0.7941336339\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
good2 \( 1 + 2.74T + 2T^{2} \)
11 \( 1 + 4.44T + 11T^{2} \)
13 \( 1 + 3.61T + 13T^{2} \)
17 \( 1 - 4.94T + 17T^{2} \)
19 \( 1 - 2.74T + 19T^{2} \)
23 \( 1 - 4.36T + 23T^{2} \)
29 \( 1 - 0.660T + 29T^{2} \)
31 \( 1 - 1.25T + 31T^{2} \)
37 \( 1 - 2.16T + 37T^{2} \)
41 \( 1 + 5.77T + 41T^{2} \)
43 \( 1 - 9.11T + 43T^{2} \)
47 \( 1 + 6.48T + 47T^{2} \)
53 \( 1 + 7.03T + 53T^{2} \)
59 \( 1 + 13.8T + 59T^{2} \)
61 \( 1 - 9.41T + 61T^{2} \)
67 \( 1 + 3.06T + 67T^{2} \)
71 \( 1 - 0.277T + 71T^{2} \)
73 \( 1 - 10.6T + 73T^{2} \)
79 \( 1 + 5.53T + 79T^{2} \)
83 \( 1 - 7.17T + 83T^{2} \)
89 \( 1 + 0.828T + 89T^{2} \)
97 \( 1 + 6.20T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.429914646007503510763344577027, −7.87850899140005062871638033455, −7.49029860630159920075233918668, −6.80826546507404103238395304726, −5.75934230589223449562089406223, −4.93550991763057356628011447392, −3.19983326125179326091952477935, −2.76967664167614973146724373250, −1.79955735601967689305456687735, −0.66566166254903819218765063437, 0.66566166254903819218765063437, 1.79955735601967689305456687735, 2.76967664167614973146724373250, 3.19983326125179326091952477935, 4.93550991763057356628011447392, 5.75934230589223449562089406223, 6.80826546507404103238395304726, 7.49029860630159920075233918668, 7.87850899140005062871638033455, 8.429914646007503510763344577027

Graph of the $Z$-function along the critical line