Properties

Label 2-3675-1.1-c1-0-110
Degree $2$
Conductor $3675$
Sign $1$
Analytic cond. $29.3450$
Root an. cond. $5.41710$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.70·2-s + 3-s + 5.34·4-s + 2.70·6-s + 9.04·8-s + 9-s + 2·11-s + 5.34·12-s + 0.921·13-s + 13.8·16-s + 1.07·17-s + 2.70·18-s − 3.07·19-s + 5.41·22-s − 2.34·23-s + 9.04·24-s + 2.49·26-s + 27-s − 6.68·29-s + 7.75·31-s + 19.3·32-s + 2·33-s + 2.92·34-s + 5.34·36-s − 10.8·37-s − 8.34·38-s + 0.921·39-s + ⋯
L(s)  = 1  + 1.91·2-s + 0.577·3-s + 2.67·4-s + 1.10·6-s + 3.19·8-s + 0.333·9-s + 0.603·11-s + 1.54·12-s + 0.255·13-s + 3.45·16-s + 0.261·17-s + 0.638·18-s − 0.706·19-s + 1.15·22-s − 0.487·23-s + 1.84·24-s + 0.489·26-s + 0.192·27-s − 1.24·29-s + 1.39·31-s + 3.42·32-s + 0.348·33-s + 0.501·34-s + 0.890·36-s − 1.78·37-s − 1.35·38-s + 0.147·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3675\)    =    \(3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(29.3450\)
Root analytic conductor: \(5.41710\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3675,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(8.736204273\)
\(L(\frac12)\) \(\approx\) \(8.736204273\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
good2 \( 1 - 2.70T + 2T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 - 0.921T + 13T^{2} \)
17 \( 1 - 1.07T + 17T^{2} \)
19 \( 1 + 3.07T + 19T^{2} \)
23 \( 1 + 2.34T + 23T^{2} \)
29 \( 1 + 6.68T + 29T^{2} \)
31 \( 1 - 7.75T + 31T^{2} \)
37 \( 1 + 10.8T + 37T^{2} \)
41 \( 1 + 6.49T + 41T^{2} \)
43 \( 1 - 6.52T + 43T^{2} \)
47 \( 1 - 4.68T + 47T^{2} \)
53 \( 1 + 3.75T + 53T^{2} \)
59 \( 1 + 10.5T + 59T^{2} \)
61 \( 1 - 4.15T + 61T^{2} \)
67 \( 1 + 4.68T + 67T^{2} \)
71 \( 1 - 2T + 71T^{2} \)
73 \( 1 - 7.07T + 73T^{2} \)
79 \( 1 - 6.15T + 79T^{2} \)
83 \( 1 - 6.83T + 83T^{2} \)
89 \( 1 + 8.34T + 89T^{2} \)
97 \( 1 + 8.43T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.297734579627359492321988902532, −7.53895812739348506835513147387, −6.76830466660251445694877960849, −6.20885820571471579855496259728, −5.41146436158327503881940672368, −4.58022999299127297423021193178, −3.87450137425130016708030967635, −3.31444242867420884515752474537, −2.34015611184835971724108055949, −1.53726228822370382831449840604, 1.53726228822370382831449840604, 2.34015611184835971724108055949, 3.31444242867420884515752474537, 3.87450137425130016708030967635, 4.58022999299127297423021193178, 5.41146436158327503881940672368, 6.20885820571471579855496259728, 6.76830466660251445694877960849, 7.53895812739348506835513147387, 8.297734579627359492321988902532

Graph of the $Z$-function along the critical line