Properties

Label 2-3675-1.1-c1-0-104
Degree $2$
Conductor $3675$
Sign $-1$
Analytic cond. $29.3450$
Root an. cond. $5.41710$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.32·2-s − 3-s − 0.236·4-s − 1.32·6-s − 2.96·8-s + 9-s + 4.47·11-s + 0.236·12-s − 0.763·13-s − 3.47·16-s − 5.23·17-s + 1.32·18-s + 1.64·19-s + 5.93·22-s − 4.29·23-s + 2.96·24-s − 1.01·26-s − 27-s + 2·29-s + 6.95·31-s + 1.32·32-s − 4.47·33-s − 6.95·34-s − 0.236·36-s + 8.59·37-s + 2.18·38-s + 0.763·39-s + ⋯
L(s)  = 1  + 0.939·2-s − 0.577·3-s − 0.118·4-s − 0.542·6-s − 1.04·8-s + 0.333·9-s + 1.34·11-s + 0.0681·12-s − 0.211·13-s − 0.868·16-s − 1.26·17-s + 0.313·18-s + 0.376·19-s + 1.26·22-s − 0.896·23-s + 0.606·24-s − 0.198·26-s − 0.192·27-s + 0.371·29-s + 1.24·31-s + 0.234·32-s − 0.778·33-s − 1.19·34-s − 0.0393·36-s + 1.41·37-s + 0.353·38-s + 0.122·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3675\)    =    \(3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(29.3450\)
Root analytic conductor: \(5.41710\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3675,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
good2 \( 1 - 1.32T + 2T^{2} \)
11 \( 1 - 4.47T + 11T^{2} \)
13 \( 1 + 0.763T + 13T^{2} \)
17 \( 1 + 5.23T + 17T^{2} \)
19 \( 1 - 1.64T + 19T^{2} \)
23 \( 1 + 4.29T + 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 - 6.95T + 31T^{2} \)
37 \( 1 - 8.59T + 37T^{2} \)
41 \( 1 + 9.61T + 41T^{2} \)
43 \( 1 + 5.31T + 43T^{2} \)
47 \( 1 + 12.9T + 47T^{2} \)
53 \( 1 - 6.95T + 53T^{2} \)
59 \( 1 - 5.31T + 59T^{2} \)
61 \( 1 + 13.9T + 61T^{2} \)
67 \( 1 + 8.59T + 67T^{2} \)
71 \( 1 + 8.47T + 71T^{2} \)
73 \( 1 + 7.23T + 73T^{2} \)
79 \( 1 + 4.94T + 79T^{2} \)
83 \( 1 - 2.47T + 83T^{2} \)
89 \( 1 + 12.8T + 89T^{2} \)
97 \( 1 - 12.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.262600764232962195350089241523, −7.08305699273002086385116008993, −6.35442414216857315127656819905, −6.03383987214604929042484368408, −4.88676789102003341084631055008, −4.47469765176153258461175819243, −3.73449942060563684394729023893, −2.75229969270356912938948029589, −1.45924227046019157729297653497, 0, 1.45924227046019157729297653497, 2.75229969270356912938948029589, 3.73449942060563684394729023893, 4.47469765176153258461175819243, 4.88676789102003341084631055008, 6.03383987214604929042484368408, 6.35442414216857315127656819905, 7.08305699273002086385116008993, 8.262600764232962195350089241523

Graph of the $Z$-function along the critical line