Properties

Label 2-3675-1.1-c1-0-10
Degree $2$
Conductor $3675$
Sign $1$
Analytic cond. $29.3450$
Root an. cond. $5.41710$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.61·2-s + 3-s + 4.85·4-s − 2.61·6-s − 7.47·8-s + 9-s − 5.47·11-s + 4.85·12-s + 0.763·13-s + 9.85·16-s − 7.70·17-s − 2.61·18-s + 3.23·19-s + 14.3·22-s − 5·23-s − 7.47·24-s − 2·26-s + 27-s + 4.70·29-s − 4.47·31-s − 10.8·32-s − 5.47·33-s + 20.1·34-s + 4.85·36-s − 5.47·37-s − 8.47·38-s + 0.763·39-s + ⋯
L(s)  = 1  − 1.85·2-s + 0.577·3-s + 2.42·4-s − 1.06·6-s − 2.64·8-s + 0.333·9-s − 1.64·11-s + 1.40·12-s + 0.211·13-s + 2.46·16-s − 1.86·17-s − 0.617·18-s + 0.742·19-s + 3.05·22-s − 1.04·23-s − 1.52·24-s − 0.392·26-s + 0.192·27-s + 0.874·29-s − 0.803·31-s − 1.91·32-s − 0.952·33-s + 3.46·34-s + 0.809·36-s − 0.899·37-s − 1.37·38-s + 0.122·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3675\)    =    \(3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(29.3450\)
Root analytic conductor: \(5.41710\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3675,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6274580068\)
\(L(\frac12)\) \(\approx\) \(0.6274580068\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
good2 \( 1 + 2.61T + 2T^{2} \)
11 \( 1 + 5.47T + 11T^{2} \)
13 \( 1 - 0.763T + 13T^{2} \)
17 \( 1 + 7.70T + 17T^{2} \)
19 \( 1 - 3.23T + 19T^{2} \)
23 \( 1 + 5T + 23T^{2} \)
29 \( 1 - 4.70T + 29T^{2} \)
31 \( 1 + 4.47T + 31T^{2} \)
37 \( 1 + 5.47T + 37T^{2} \)
41 \( 1 - 8T + 41T^{2} \)
43 \( 1 + 8.23T + 43T^{2} \)
47 \( 1 - 7.23T + 47T^{2} \)
53 \( 1 + 0.472T + 53T^{2} \)
59 \( 1 - 0.763T + 59T^{2} \)
61 \( 1 - 15.4T + 61T^{2} \)
67 \( 1 - 2.70T + 67T^{2} \)
71 \( 1 + 0.527T + 71T^{2} \)
73 \( 1 - 1.23T + 73T^{2} \)
79 \( 1 - 1.76T + 79T^{2} \)
83 \( 1 - 12.4T + 83T^{2} \)
89 \( 1 - 5.70T + 89T^{2} \)
97 \( 1 - 12.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.563362030179154189249851116051, −8.005408716677935806331482791598, −7.37280407324740512629002937130, −6.74483141747641033482288038539, −5.84504124464702679918995066724, −4.79122456603031799517233706677, −3.48663380880317772519994741935, −2.42488400560722441349749799093, −2.03701692734220149177413444035, −0.56063986540561002413308348445, 0.56063986540561002413308348445, 2.03701692734220149177413444035, 2.42488400560722441349749799093, 3.48663380880317772519994741935, 4.79122456603031799517233706677, 5.84504124464702679918995066724, 6.74483141747641033482288038539, 7.37280407324740512629002937130, 8.005408716677935806331482791598, 8.563362030179154189249851116051

Graph of the $Z$-function along the critical line