Properties

Label 2-36414-1.1-c1-0-51
Degree $2$
Conductor $36414$
Sign $-1$
Analytic cond. $290.767$
Root an. cond. $17.0518$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s − 7-s + 8-s − 2·10-s − 2·11-s + 4·13-s − 14-s + 16-s − 2·19-s − 2·20-s − 2·22-s − 4·23-s − 25-s + 4·26-s − 28-s + 32-s + 2·35-s + 8·37-s − 2·38-s − 2·40-s − 2·41-s − 4·43-s − 2·44-s − 4·46-s + 49-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s − 0.377·7-s + 0.353·8-s − 0.632·10-s − 0.603·11-s + 1.10·13-s − 0.267·14-s + 1/4·16-s − 0.458·19-s − 0.447·20-s − 0.426·22-s − 0.834·23-s − 1/5·25-s + 0.784·26-s − 0.188·28-s + 0.176·32-s + 0.338·35-s + 1.31·37-s − 0.324·38-s − 0.316·40-s − 0.312·41-s − 0.609·43-s − 0.301·44-s − 0.589·46-s + 1/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36414 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36414 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(36414\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(290.767\)
Root analytic conductor: \(17.0518\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 36414,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 + T \)
17 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.31369377076791, −14.67987331208453, −14.08079950869310, −13.45958536921614, −13.13815758771965, −12.63351846823154, −11.99298447875741, −11.53081811524087, −11.14747295623877, −10.46073539049924, −10.04564014745370, −9.306632900303704, −8.505926403989198, −8.123722453589777, −7.641960764969832, −6.882261980960588, −6.413295276663484, −5.759842501166288, −5.274775146531773, −4.356429807680086, −3.975549536587438, −3.469639087559522, −2.707413786758154, −2.017308339495617, −0.9841195718901139, 0, 0.9841195718901139, 2.017308339495617, 2.707413786758154, 3.469639087559522, 3.975549536587438, 4.356429807680086, 5.274775146531773, 5.759842501166288, 6.413295276663484, 6.882261980960588, 7.641960764969832, 8.123722453589777, 8.505926403989198, 9.306632900303704, 10.04564014745370, 10.46073539049924, 11.14747295623877, 11.53081811524087, 11.99298447875741, 12.63351846823154, 13.13815758771965, 13.45958536921614, 14.08079950869310, 14.67987331208453, 15.31369377076791

Graph of the $Z$-function along the critical line