L(s) = 1 | + (−0.809 + 0.587i)2-s + (−0.309 − 0.951i)3-s + (−0.309 + 0.951i)4-s + (1.61 + 1.17i)5-s + (0.809 + 0.587i)6-s + (1.23 − 3.80i)7-s + (−0.927 − 2.85i)8-s + (−0.809 + 0.587i)9-s − 2·10-s + 0.999·12-s + (1.61 − 1.17i)13-s + (1.23 + 3.80i)14-s + (0.618 − 1.90i)15-s + (0.809 + 0.587i)16-s + (1.61 + 1.17i)17-s + (0.309 − 0.951i)18-s + ⋯ |
L(s) = 1 | + (−0.572 + 0.415i)2-s + (−0.178 − 0.549i)3-s + (−0.154 + 0.475i)4-s + (0.723 + 0.525i)5-s + (0.330 + 0.239i)6-s + (0.467 − 1.43i)7-s + (−0.327 − 1.00i)8-s + (−0.269 + 0.195i)9-s − 0.632·10-s + 0.288·12-s + (0.448 − 0.326i)13-s + (0.330 + 1.01i)14-s + (0.159 − 0.491i)15-s + (0.202 + 0.146i)16-s + (0.392 + 0.285i)17-s + (0.0728 − 0.224i)18-s + ⋯ |
Λ(s)=(=(363s/2ΓC(s)L(s)(0.995+0.0913i)Λ(2−s)
Λ(s)=(=(363s/2ΓC(s+1/2)L(s)(0.995+0.0913i)Λ(1−s)
Degree: |
2 |
Conductor: |
363
= 3⋅112
|
Sign: |
0.995+0.0913i
|
Analytic conductor: |
2.89856 |
Root analytic conductor: |
1.70251 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ363(124,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 363, ( :1/2), 0.995+0.0913i)
|
Particular Values
L(1) |
≈ |
1.05846−0.0484686i |
L(21) |
≈ |
1.05846−0.0484686i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.309+0.951i)T |
| 11 | 1 |
good | 2 | 1+(0.809−0.587i)T+(0.618−1.90i)T2 |
| 5 | 1+(−1.61−1.17i)T+(1.54+4.75i)T2 |
| 7 | 1+(−1.23+3.80i)T+(−5.66−4.11i)T2 |
| 13 | 1+(−1.61+1.17i)T+(4.01−12.3i)T2 |
| 17 | 1+(−1.61−1.17i)T+(5.25+16.1i)T2 |
| 19 | 1+(−15.3+11.1i)T2 |
| 23 | 1−8T+23T2 |
| 29 | 1+(1.85−5.70i)T+(−23.4−17.0i)T2 |
| 31 | 1+(−6.47+4.70i)T+(9.57−29.4i)T2 |
| 37 | 1+(−1.85+5.70i)T+(−29.9−21.7i)T2 |
| 41 | 1+(0.618+1.90i)T+(−33.1+24.0i)T2 |
| 43 | 1+43T2 |
| 47 | 1+(−2.47−7.60i)T+(−38.0+27.6i)T2 |
| 53 | 1+(4.85−3.52i)T+(16.3−50.4i)T2 |
| 59 | 1+(1.23−3.80i)T+(−47.7−34.6i)T2 |
| 61 | 1+(4.85+3.52i)T+(18.8+58.0i)T2 |
| 67 | 1+4T+67T2 |
| 71 | 1+(21.9+67.5i)T2 |
| 73 | 1+(4.32−13.3i)T+(−59.0−42.9i)T2 |
| 79 | 1+(−3.23+2.35i)T+(24.4−75.1i)T2 |
| 83 | 1+(9.70+7.05i)T+(25.6+78.9i)T2 |
| 89 | 1+6T+89T2 |
| 97 | 1+(1.61−1.17i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.14035074097355378837046640489, −10.51848162273505856752290011408, −9.532947179135651459871728145427, −8.428035839641687917853336516087, −7.51155274978116669969181040823, −6.95942308197040727936427706270, −5.94311890327935492725520166309, −4.37718058628109478588777029219, −3.05472149613818657601559610566, −1.08779967835696234453711612737,
1.45331848047328978567482974789, 2.76978359856214426281299607856, 4.84801067984529428985842469974, 5.41176829238472466554664166835, 6.31574932757034554537252582885, 8.246268470036361314252354269464, 9.012676679030885163482067928499, 9.460846099457401586346010017683, 10.38832560941731692992475797034, 11.40856045521685175147980469806