L(s) = 1 | + (−1.80 + 1.31i)2-s + (0.309 + 0.951i)3-s + (0.927 − 2.85i)4-s + (−1.61 − 1.17i)5-s + (−1.80 − 1.31i)6-s + (−1.38 + 4.25i)7-s + (0.690 + 2.12i)8-s + (−0.809 + 0.587i)9-s + 4.47·10-s + 2.99·12-s + (−3.09 − 9.51i)14-s + (0.618 − 1.90i)15-s + (0.809 + 0.587i)16-s + (−3.61 − 2.62i)17-s + (0.690 − 2.12i)18-s + (−1.38 − 4.25i)19-s + ⋯ |
L(s) = 1 | + (−1.27 + 0.929i)2-s + (0.178 + 0.549i)3-s + (0.463 − 1.42i)4-s + (−0.723 − 0.525i)5-s + (−0.738 − 0.536i)6-s + (−0.522 + 1.60i)7-s + (0.244 + 0.751i)8-s + (−0.269 + 0.195i)9-s + 1.41·10-s + 0.866·12-s + (−0.825 − 2.54i)14-s + (0.159 − 0.491i)15-s + (0.202 + 0.146i)16-s + (−0.877 − 0.637i)17-s + (0.162 − 0.501i)18-s + (−0.317 − 0.975i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0694 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0694 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.309 - 0.951i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (1.80 - 1.31i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (1.61 + 1.17i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (1.38 - 4.25i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (3.61 + 2.62i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.38 + 4.25i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 4T + 23T^{2} \) |
| 29 | \( 1 + (-1.38 + 4.25i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-0.618 + 1.90i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (1.38 + 4.25i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 4.47T + 43T^{2} \) |
| 47 | \( 1 + (-2.47 - 7.60i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (4.85 - 3.52i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (7.23 + 5.25i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 12T + 67T^{2} \) |
| 71 | \( 1 + (-6.47 - 4.70i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (2.76 - 8.50i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (10.8 - 7.88i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-7.23 - 5.25i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 14T + 89T^{2} \) |
| 97 | \( 1 + (1.61 - 1.17i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.00816007690232061038191523261, −9.769634080470012183104372079288, −9.095155075075594348895604095924, −8.619710990171056090780648214955, −7.76125293115082883441175143672, −6.53554551506523268766400769498, −5.63493262137862259144867806582, −4.34907605974048514928284053301, −2.57095219232293235532905053543, 0,
1.59237093743335086277336395191, 3.18757331967181542271751575697, 4.06724442962360687649635614436, 6.37427797255033564209703097513, 7.36742244047383441975759703259, 7.919997173281999995308655437635, 8.911596981415651533460826170864, 10.11311115078579586624472779476, 10.57406753056479389385192318086