Properties

Label 2-363-1.1-c7-0-26
Degree $2$
Conductor $363$
Sign $1$
Analytic cond. $113.395$
Root an. cond. $10.6487$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7.08·2-s + 27·3-s − 77.7·4-s − 194.·5-s − 191.·6-s − 182.·7-s + 1.45e3·8-s + 729·9-s + 1.37e3·10-s − 2.10e3·12-s + 7.08e3·13-s + 1.29e3·14-s − 5.24e3·15-s − 373.·16-s − 960.·17-s − 5.16e3·18-s + 1.89e4·19-s + 1.51e4·20-s − 4.93e3·21-s − 1.31e4·23-s + 3.93e4·24-s − 4.03e4·25-s − 5.02e4·26-s + 1.96e4·27-s + 1.42e4·28-s − 5.31e4·29-s + 3.71e4·30-s + ⋯
L(s)  = 1  − 0.626·2-s + 0.577·3-s − 0.607·4-s − 0.695·5-s − 0.361·6-s − 0.201·7-s + 1.00·8-s + 0.333·9-s + 0.435·10-s − 0.350·12-s + 0.894·13-s + 0.126·14-s − 0.401·15-s − 0.0227·16-s − 0.0474·17-s − 0.208·18-s + 0.632·19-s + 0.422·20-s − 0.116·21-s − 0.225·23-s + 0.581·24-s − 0.516·25-s − 0.560·26-s + 0.192·27-s + 0.122·28-s − 0.404·29-s + 0.251·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(113.395\)
Root analytic conductor: \(10.6487\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 363,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.157141502\)
\(L(\frac12)\) \(\approx\) \(1.157141502\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 27T \)
11 \( 1 \)
good2 \( 1 + 7.08T + 128T^{2} \)
5 \( 1 + 194.T + 7.81e4T^{2} \)
7 \( 1 + 182.T + 8.23e5T^{2} \)
13 \( 1 - 7.08e3T + 6.27e7T^{2} \)
17 \( 1 + 960.T + 4.10e8T^{2} \)
19 \( 1 - 1.89e4T + 8.93e8T^{2} \)
23 \( 1 + 1.31e4T + 3.40e9T^{2} \)
29 \( 1 + 5.31e4T + 1.72e10T^{2} \)
31 \( 1 - 8.32e4T + 2.75e10T^{2} \)
37 \( 1 + 2.53e5T + 9.49e10T^{2} \)
41 \( 1 + 3.33e5T + 1.94e11T^{2} \)
43 \( 1 + 3.38e5T + 2.71e11T^{2} \)
47 \( 1 - 6.97e5T + 5.06e11T^{2} \)
53 \( 1 + 1.29e6T + 1.17e12T^{2} \)
59 \( 1 - 1.52e5T + 2.48e12T^{2} \)
61 \( 1 - 1.13e6T + 3.14e12T^{2} \)
67 \( 1 - 4.35e6T + 6.06e12T^{2} \)
71 \( 1 - 4.64e6T + 9.09e12T^{2} \)
73 \( 1 + 2.79e6T + 1.10e13T^{2} \)
79 \( 1 + 3.66e6T + 1.92e13T^{2} \)
83 \( 1 - 6.03e6T + 2.71e13T^{2} \)
89 \( 1 - 3.60e6T + 4.42e13T^{2} \)
97 \( 1 - 8.59e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.992323951065508470229482929495, −9.244829370886954283150748800787, −8.336417309746932619673485196296, −7.83487879245742495409687790477, −6.72294132753306925612716542557, −5.26469628943002324733368683087, −4.07861740434068918112222930064, −3.35194308597820693139423438798, −1.71082725750893476049855083364, −0.55972199505217490081359278376, 0.55972199505217490081359278376, 1.71082725750893476049855083364, 3.35194308597820693139423438798, 4.07861740434068918112222930064, 5.26469628943002324733368683087, 6.72294132753306925612716542557, 7.83487879245742495409687790477, 8.336417309746932619673485196296, 9.244829370886954283150748800787, 9.992323951065508470229482929495

Graph of the $Z$-function along the critical line