Properties

Label 2-363-1.1-c7-0-14
Degree $2$
Conductor $363$
Sign $1$
Analytic cond. $113.395$
Root an. cond. $10.6487$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.76·2-s − 27·3-s − 94.7·4-s − 461.·5-s + 155.·6-s + 625.·7-s + 1.28e3·8-s + 729·9-s + 2.66e3·10-s + 2.55e3·12-s + 7.05e3·13-s − 3.60e3·14-s + 1.24e4·15-s + 4.71e3·16-s − 2.99e4·17-s − 4.20e3·18-s − 1.90e4·19-s + 4.37e4·20-s − 1.68e4·21-s + 1.07e5·23-s − 3.46e4·24-s + 1.35e5·25-s − 4.06e4·26-s − 1.96e4·27-s − 5.92e4·28-s + 1.42e5·29-s − 7.19e4·30-s + ⋯
L(s)  = 1  − 0.509·2-s − 0.577·3-s − 0.740·4-s − 1.65·5-s + 0.294·6-s + 0.689·7-s + 0.887·8-s + 0.333·9-s + 0.842·10-s + 0.427·12-s + 0.890·13-s − 0.351·14-s + 0.954·15-s + 0.287·16-s − 1.48·17-s − 0.169·18-s − 0.636·19-s + 1.22·20-s − 0.398·21-s + 1.84·23-s − 0.512·24-s + 1.73·25-s − 0.453·26-s − 0.192·27-s − 0.510·28-s + 1.08·29-s − 0.486·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(113.395\)
Root analytic conductor: \(10.6487\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 363,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.4050091738\)
\(L(\frac12)\) \(\approx\) \(0.4050091738\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 27T \)
11 \( 1 \)
good2 \( 1 + 5.76T + 128T^{2} \)
5 \( 1 + 461.T + 7.81e4T^{2} \)
7 \( 1 - 625.T + 8.23e5T^{2} \)
13 \( 1 - 7.05e3T + 6.27e7T^{2} \)
17 \( 1 + 2.99e4T + 4.10e8T^{2} \)
19 \( 1 + 1.90e4T + 8.93e8T^{2} \)
23 \( 1 - 1.07e5T + 3.40e9T^{2} \)
29 \( 1 - 1.42e5T + 1.72e10T^{2} \)
31 \( 1 + 2.13e5T + 2.75e10T^{2} \)
37 \( 1 + 5.03e5T + 9.49e10T^{2} \)
41 \( 1 + 3.85e5T + 1.94e11T^{2} \)
43 \( 1 + 2.04e5T + 2.71e11T^{2} \)
47 \( 1 - 3.38e5T + 5.06e11T^{2} \)
53 \( 1 - 2.19e5T + 1.17e12T^{2} \)
59 \( 1 + 5.68e5T + 2.48e12T^{2} \)
61 \( 1 + 1.24e6T + 3.14e12T^{2} \)
67 \( 1 + 6.69e5T + 6.06e12T^{2} \)
71 \( 1 + 1.71e5T + 9.09e12T^{2} \)
73 \( 1 + 5.70e6T + 1.10e13T^{2} \)
79 \( 1 - 1.17e6T + 1.92e13T^{2} \)
83 \( 1 - 4.41e6T + 2.71e13T^{2} \)
89 \( 1 - 8.31e5T + 4.42e13T^{2} \)
97 \( 1 - 1.38e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.62023644329985532143152143471, −8.829331278957281435930338048477, −8.639411487517489352678015418783, −7.54335475568113049985203238764, −6.71548099769716377498977673316, −5.02963641135617163007034604699, −4.44310896298515312731446205409, −3.49146173795058303479153105456, −1.45878138390266339021919172951, −0.36289170977770840943162597436, 0.36289170977770840943162597436, 1.45878138390266339021919172951, 3.49146173795058303479153105456, 4.44310896298515312731446205409, 5.02963641135617163007034604699, 6.71548099769716377498977673316, 7.54335475568113049985203238764, 8.639411487517489352678015418783, 8.829331278957281435930338048477, 10.62023644329985532143152143471

Graph of the $Z$-function along the critical line