Properties

Label 2-363-1.1-c7-0-124
Degree $2$
Conductor $363$
Sign $-1$
Analytic cond. $113.395$
Root an. cond. $10.6487$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 17.3·2-s + 27·3-s + 174.·4-s + 113.·5-s + 469.·6-s − 892.·7-s + 807.·8-s + 729·9-s + 1.96e3·10-s + 4.70e3·12-s − 5.26e3·13-s − 1.55e4·14-s + 3.05e3·15-s − 8.28e3·16-s − 1.58e4·17-s + 1.26e4·18-s + 7.01e3·19-s + 1.97e4·20-s − 2.40e4·21-s − 4.30e4·23-s + 2.18e4·24-s − 6.53e4·25-s − 9.14e4·26-s + 1.96e4·27-s − 1.55e5·28-s + 4.68e4·29-s + 5.30e4·30-s + ⋯
L(s)  = 1  + 1.53·2-s + 0.577·3-s + 1.36·4-s + 0.404·5-s + 0.887·6-s − 0.983·7-s + 0.557·8-s + 0.333·9-s + 0.621·10-s + 0.786·12-s − 0.664·13-s − 1.51·14-s + 0.233·15-s − 0.505·16-s − 0.784·17-s + 0.512·18-s + 0.234·19-s + 0.551·20-s − 0.567·21-s − 0.737·23-s + 0.321·24-s − 0.836·25-s − 1.02·26-s + 0.192·27-s − 1.33·28-s + 0.357·29-s + 0.358·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(113.395\)
Root analytic conductor: \(10.6487\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 363,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 27T \)
11 \( 1 \)
good2 \( 1 - 17.3T + 128T^{2} \)
5 \( 1 - 113.T + 7.81e4T^{2} \)
7 \( 1 + 892.T + 8.23e5T^{2} \)
13 \( 1 + 5.26e3T + 6.27e7T^{2} \)
17 \( 1 + 1.58e4T + 4.10e8T^{2} \)
19 \( 1 - 7.01e3T + 8.93e8T^{2} \)
23 \( 1 + 4.30e4T + 3.40e9T^{2} \)
29 \( 1 - 4.68e4T + 1.72e10T^{2} \)
31 \( 1 + 1.00e4T + 2.75e10T^{2} \)
37 \( 1 + 5.31e5T + 9.49e10T^{2} \)
41 \( 1 - 4.75e5T + 1.94e11T^{2} \)
43 \( 1 - 7.87e5T + 2.71e11T^{2} \)
47 \( 1 + 2.97e5T + 5.06e11T^{2} \)
53 \( 1 + 5.16e5T + 1.17e12T^{2} \)
59 \( 1 + 2.94e6T + 2.48e12T^{2} \)
61 \( 1 - 7.43e5T + 3.14e12T^{2} \)
67 \( 1 + 3.46e6T + 6.06e12T^{2} \)
71 \( 1 - 4.61e6T + 9.09e12T^{2} \)
73 \( 1 + 2.81e6T + 1.10e13T^{2} \)
79 \( 1 - 3.69e6T + 1.92e13T^{2} \)
83 \( 1 - 9.94e5T + 2.71e13T^{2} \)
89 \( 1 + 1.51e6T + 4.42e13T^{2} \)
97 \( 1 - 1.68e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.746135773448339026289280154660, −9.025060958335319141727663779159, −7.58413831203773442320737600920, −6.58093360139717017537559996594, −5.84976680089324320775165341898, −4.71405537293907907931220711165, −3.76739989752191574490017737419, −2.85407234131552376817161469222, −1.98705768537749381887813943256, 0, 1.98705768537749381887813943256, 2.85407234131552376817161469222, 3.76739989752191574490017737419, 4.71405537293907907931220711165, 5.84976680089324320775165341898, 6.58093360139717017537559996594, 7.58413831203773442320737600920, 9.025060958335319141727663779159, 9.746135773448339026289280154660

Graph of the $Z$-function along the critical line