Properties

Label 2-363-1.1-c7-0-110
Degree $2$
Conductor $363$
Sign $-1$
Analytic cond. $113.395$
Root an. cond. $10.6487$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.87·2-s + 27·3-s − 93.4·4-s + 248.·5-s − 158.·6-s + 1.00e3·7-s + 1.30e3·8-s + 729·9-s − 1.46e3·10-s − 2.52e3·12-s + 3.99e3·13-s − 5.88e3·14-s + 6.72e3·15-s + 4.31e3·16-s − 2.37e4·17-s − 4.28e3·18-s − 4.62e4·19-s − 2.32e4·20-s + 2.70e4·21-s + 2.10e4·23-s + 3.51e4·24-s − 1.61e4·25-s − 2.34e4·26-s + 1.96e4·27-s − 9.36e4·28-s − 1.35e5·29-s − 3.95e4·30-s + ⋯
L(s)  = 1  − 0.519·2-s + 0.577·3-s − 0.730·4-s + 0.890·5-s − 0.299·6-s + 1.10·7-s + 0.898·8-s + 0.333·9-s − 0.462·10-s − 0.421·12-s + 0.504·13-s − 0.573·14-s + 0.514·15-s + 0.263·16-s − 1.17·17-s − 0.173·18-s − 1.54·19-s − 0.650·20-s + 0.637·21-s + 0.361·23-s + 0.518·24-s − 0.207·25-s − 0.262·26-s + 0.192·27-s − 0.806·28-s − 1.03·29-s − 0.267·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(113.395\)
Root analytic conductor: \(10.6487\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 363,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 27T \)
11 \( 1 \)
good2 \( 1 + 5.87T + 128T^{2} \)
5 \( 1 - 248.T + 7.81e4T^{2} \)
7 \( 1 - 1.00e3T + 8.23e5T^{2} \)
13 \( 1 - 3.99e3T + 6.27e7T^{2} \)
17 \( 1 + 2.37e4T + 4.10e8T^{2} \)
19 \( 1 + 4.62e4T + 8.93e8T^{2} \)
23 \( 1 - 2.10e4T + 3.40e9T^{2} \)
29 \( 1 + 1.35e5T + 1.72e10T^{2} \)
31 \( 1 + 2.20e5T + 2.75e10T^{2} \)
37 \( 1 + 3.24e5T + 9.49e10T^{2} \)
41 \( 1 - 4.91e5T + 1.94e11T^{2} \)
43 \( 1 - 2.89e5T + 2.71e11T^{2} \)
47 \( 1 + 3.23e5T + 5.06e11T^{2} \)
53 \( 1 + 1.25e6T + 1.17e12T^{2} \)
59 \( 1 + 6.74e5T + 2.48e12T^{2} \)
61 \( 1 - 2.77e6T + 3.14e12T^{2} \)
67 \( 1 - 1.64e6T + 6.06e12T^{2} \)
71 \( 1 + 3.58e6T + 9.09e12T^{2} \)
73 \( 1 + 3.17e6T + 1.10e13T^{2} \)
79 \( 1 - 3.34e6T + 1.92e13T^{2} \)
83 \( 1 + 6.63e6T + 2.71e13T^{2} \)
89 \( 1 + 9.30e6T + 4.42e13T^{2} \)
97 \( 1 - 1.36e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.511030268842707809764614224258, −8.849319310502373191702849269563, −8.249404573005807674771498007633, −7.18386760826784849477249842600, −5.85498185784686951755635378921, −4.75876703409439217870367709531, −3.89787182427082299201538932345, −2.12513516978258412169771024064, −1.52583004737491752374130403236, 0, 1.52583004737491752374130403236, 2.12513516978258412169771024064, 3.89787182427082299201538932345, 4.75876703409439217870367709531, 5.85498185784686951755635378921, 7.18386760826784849477249842600, 8.249404573005807674771498007633, 8.849319310502373191702849269563, 9.511030268842707809764614224258

Graph of the $Z$-function along the critical line