Properties

Label 2-363-1.1-c7-0-11
Degree $2$
Conductor $363$
Sign $1$
Analytic cond. $113.395$
Root an. cond. $10.6487$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 19.6·2-s − 27·3-s + 256.·4-s − 313.·5-s + 529.·6-s − 1.11e3·7-s − 2.52e3·8-s + 729·9-s + 6.14e3·10-s − 6.92e3·12-s + 7.35e3·13-s + 2.18e4·14-s + 8.46e3·15-s + 1.66e4·16-s + 2.83e4·17-s − 1.42e4·18-s − 3.25e4·19-s − 8.04e4·20-s + 3.01e4·21-s − 1.30e4·23-s + 6.80e4·24-s + 2.01e4·25-s − 1.44e5·26-s − 1.96e4·27-s − 2.86e5·28-s − 1.74e4·29-s − 1.66e5·30-s + ⋯
L(s)  = 1  − 1.73·2-s − 0.577·3-s + 2.00·4-s − 1.12·5-s + 1.00·6-s − 1.22·7-s − 1.74·8-s + 0.333·9-s + 1.94·10-s − 1.15·12-s + 0.929·13-s + 2.12·14-s + 0.647·15-s + 1.01·16-s + 1.39·17-s − 0.577·18-s − 1.08·19-s − 2.24·20-s + 0.709·21-s − 0.223·23-s + 1.00·24-s + 0.258·25-s − 1.61·26-s − 0.192·27-s − 2.46·28-s − 0.132·29-s − 1.12·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(113.395\)
Root analytic conductor: \(10.6487\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 363,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.2242559823\)
\(L(\frac12)\) \(\approx\) \(0.2242559823\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 27T \)
11 \( 1 \)
good2 \( 1 + 19.6T + 128T^{2} \)
5 \( 1 + 313.T + 7.81e4T^{2} \)
7 \( 1 + 1.11e3T + 8.23e5T^{2} \)
13 \( 1 - 7.35e3T + 6.27e7T^{2} \)
17 \( 1 - 2.83e4T + 4.10e8T^{2} \)
19 \( 1 + 3.25e4T + 8.93e8T^{2} \)
23 \( 1 + 1.30e4T + 3.40e9T^{2} \)
29 \( 1 + 1.74e4T + 1.72e10T^{2} \)
31 \( 1 - 2.79e5T + 2.75e10T^{2} \)
37 \( 1 + 6.13e5T + 9.49e10T^{2} \)
41 \( 1 - 3.74e5T + 1.94e11T^{2} \)
43 \( 1 - 2.61e5T + 2.71e11T^{2} \)
47 \( 1 - 3.16e5T + 5.06e11T^{2} \)
53 \( 1 - 6.00e5T + 1.17e12T^{2} \)
59 \( 1 + 5.64e5T + 2.48e12T^{2} \)
61 \( 1 + 1.35e6T + 3.14e12T^{2} \)
67 \( 1 + 4.47e6T + 6.06e12T^{2} \)
71 \( 1 + 5.52e6T + 9.09e12T^{2} \)
73 \( 1 - 1.25e6T + 1.10e13T^{2} \)
79 \( 1 - 1.68e5T + 1.92e13T^{2} \)
83 \( 1 - 7.63e6T + 2.71e13T^{2} \)
89 \( 1 + 6.22e6T + 4.42e13T^{2} \)
97 \( 1 + 2.66e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.31121871435819162703525068003, −9.302706004724902788957296654438, −8.402789441541226356900025753937, −7.62981886717485182422637720305, −6.71642487923348894230078771673, −5.93729012830013822890780083670, −4.06951027266932808567460812150, −2.97187247511880345404384331204, −1.31950417945929955916217505382, −0.32856243229288839801773599604, 0.32856243229288839801773599604, 1.31950417945929955916217505382, 2.97187247511880345404384331204, 4.06951027266932808567460812150, 5.93729012830013822890780083670, 6.71642487923348894230078771673, 7.62981886717485182422637720305, 8.402789441541226356900025753937, 9.302706004724902788957296654438, 10.31121871435819162703525068003

Graph of the $Z$-function along the critical line