Properties

Label 2-363-1.1-c7-0-10
Degree $2$
Conductor $363$
Sign $1$
Analytic cond. $113.395$
Root an. cond. $10.6487$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 13.0·2-s + 27·3-s + 43.1·4-s + 38.5·5-s − 353.·6-s − 1.33e3·7-s + 1.11e3·8-s + 729·9-s − 504.·10-s + 1.16e3·12-s − 1.30e4·13-s + 1.74e4·14-s + 1.04e3·15-s − 2.00e4·16-s − 1.32e4·17-s − 9.53e3·18-s + 1.58e4·19-s + 1.66e3·20-s − 3.59e4·21-s + 4.98e4·23-s + 2.99e4·24-s − 7.66e4·25-s + 1.70e5·26-s + 1.96e4·27-s − 5.73e4·28-s − 1.34e5·29-s − 1.36e4·30-s + ⋯
L(s)  = 1  − 1.15·2-s + 0.577·3-s + 0.336·4-s + 0.137·5-s − 0.667·6-s − 1.46·7-s + 0.766·8-s + 0.333·9-s − 0.159·10-s + 0.194·12-s − 1.64·13-s + 1.69·14-s + 0.0796·15-s − 1.22·16-s − 0.655·17-s − 0.385·18-s + 0.530·19-s + 0.0464·20-s − 0.846·21-s + 0.854·23-s + 0.442·24-s − 0.980·25-s + 1.89·26-s + 0.192·27-s − 0.493·28-s − 1.02·29-s − 0.0920·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(113.395\)
Root analytic conductor: \(10.6487\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 363,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.3954490191\)
\(L(\frac12)\) \(\approx\) \(0.3954490191\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 27T \)
11 \( 1 \)
good2 \( 1 + 13.0T + 128T^{2} \)
5 \( 1 - 38.5T + 7.81e4T^{2} \)
7 \( 1 + 1.33e3T + 8.23e5T^{2} \)
13 \( 1 + 1.30e4T + 6.27e7T^{2} \)
17 \( 1 + 1.32e4T + 4.10e8T^{2} \)
19 \( 1 - 1.58e4T + 8.93e8T^{2} \)
23 \( 1 - 4.98e4T + 3.40e9T^{2} \)
29 \( 1 + 1.34e5T + 1.72e10T^{2} \)
31 \( 1 + 1.89e5T + 2.75e10T^{2} \)
37 \( 1 + 2.40e5T + 9.49e10T^{2} \)
41 \( 1 - 3.99e5T + 1.94e11T^{2} \)
43 \( 1 + 9.17e5T + 2.71e11T^{2} \)
47 \( 1 - 1.04e6T + 5.06e11T^{2} \)
53 \( 1 - 1.28e6T + 1.17e12T^{2} \)
59 \( 1 - 2.94e5T + 2.48e12T^{2} \)
61 \( 1 - 4.90e5T + 3.14e12T^{2} \)
67 \( 1 + 2.38e6T + 6.06e12T^{2} \)
71 \( 1 + 1.03e6T + 9.09e12T^{2} \)
73 \( 1 + 4.42e6T + 1.10e13T^{2} \)
79 \( 1 + 3.47e6T + 1.92e13T^{2} \)
83 \( 1 - 3.35e5T + 2.71e13T^{2} \)
89 \( 1 + 1.00e7T + 4.42e13T^{2} \)
97 \( 1 - 1.77e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.787694940006605185456029873008, −9.449104501863357289347816770679, −8.675660323999060561200535514861, −7.34330624461677680687228282818, −7.05778750211663025146939030713, −5.49118573601798714623146464389, −4.12872695157464417723802181919, −2.89594920744874977238118221928, −1.85534004702121657934599071160, −0.32844099540793814658323609878, 0.32844099540793814658323609878, 1.85534004702121657934599071160, 2.89594920744874977238118221928, 4.12872695157464417723802181919, 5.49118573601798714623146464389, 7.05778750211663025146939030713, 7.34330624461677680687228282818, 8.675660323999060561200535514861, 9.449104501863357289347816770679, 9.787694940006605185456029873008

Graph of the $Z$-function along the critical line