Properties

Label 2-363-1.1-c1-0-17
Degree $2$
Conductor $363$
Sign $-1$
Analytic cond. $2.89856$
Root an. cond. $1.70251$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.618·2-s + 3-s − 1.61·4-s − 2.61·5-s + 0.618·6-s − 3·7-s − 2.23·8-s + 9-s − 1.61·10-s − 1.61·12-s − 1.76·13-s − 1.85·14-s − 2.61·15-s + 1.85·16-s − 1.61·17-s + 0.618·18-s − 5.85·19-s + 4.23·20-s − 3·21-s + 3.47·23-s − 2.23·24-s + 1.85·25-s − 1.09·26-s + 27-s + 4.85·28-s − 4.47·29-s − 1.61·30-s + ⋯
L(s)  = 1  + 0.437·2-s + 0.577·3-s − 0.809·4-s − 1.17·5-s + 0.252·6-s − 1.13·7-s − 0.790·8-s + 0.333·9-s − 0.511·10-s − 0.467·12-s − 0.489·13-s − 0.495·14-s − 0.675·15-s + 0.463·16-s − 0.392·17-s + 0.145·18-s − 1.34·19-s + 0.947·20-s − 0.654·21-s + 0.723·23-s − 0.456·24-s + 0.370·25-s − 0.213·26-s + 0.192·27-s + 0.917·28-s − 0.830·29-s − 0.295·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(2.89856\)
Root analytic conductor: \(1.70251\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 363,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
11 \( 1 \)
good2 \( 1 - 0.618T + 2T^{2} \)
5 \( 1 + 2.61T + 5T^{2} \)
7 \( 1 + 3T + 7T^{2} \)
13 \( 1 + 1.76T + 13T^{2} \)
17 \( 1 + 1.61T + 17T^{2} \)
19 \( 1 + 5.85T + 19T^{2} \)
23 \( 1 - 3.47T + 23T^{2} \)
29 \( 1 + 4.47T + 29T^{2} \)
31 \( 1 - 2.85T + 31T^{2} \)
37 \( 1 - 0.236T + 37T^{2} \)
41 \( 1 - 11.9T + 41T^{2} \)
43 \( 1 + 6.23T + 43T^{2} \)
47 \( 1 - 1.61T + 47T^{2} \)
53 \( 1 + 9.61T + 53T^{2} \)
59 \( 1 - 10.3T + 59T^{2} \)
61 \( 1 + 7.85T + 61T^{2} \)
67 \( 1 + 9.56T + 67T^{2} \)
71 \( 1 + 5.56T + 71T^{2} \)
73 \( 1 - 3.23T + 73T^{2} \)
79 \( 1 + 9.47T + 79T^{2} \)
83 \( 1 + 0.708T + 83T^{2} \)
89 \( 1 - 0.527T + 89T^{2} \)
97 \( 1 + 14.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.03365687565380218311807407594, −9.853554053915169086297688218088, −9.072922961471080520082514363765, −8.262328614028359519534830216125, −7.23902800568546240059971405639, −6.12188962970225857637937319661, −4.61258388867120864853280197895, −3.86764959082198904621871401652, −2.88545461561253685689728106456, 0, 2.88545461561253685689728106456, 3.86764959082198904621871401652, 4.61258388867120864853280197895, 6.12188962970225857637937319661, 7.23902800568546240059971405639, 8.262328614028359519534830216125, 9.072922961471080520082514363765, 9.853554053915169086297688218088, 11.03365687565380218311807407594

Graph of the $Z$-function along the critical line