L(s) = 1 | + 0.618·2-s + 3-s − 1.61·4-s − 2.61·5-s + 0.618·6-s − 3·7-s − 2.23·8-s + 9-s − 1.61·10-s − 1.61·12-s − 1.76·13-s − 1.85·14-s − 2.61·15-s + 1.85·16-s − 1.61·17-s + 0.618·18-s − 5.85·19-s + 4.23·20-s − 3·21-s + 3.47·23-s − 2.23·24-s + 1.85·25-s − 1.09·26-s + 27-s + 4.85·28-s − 4.47·29-s − 1.61·30-s + ⋯ |
L(s) = 1 | + 0.437·2-s + 0.577·3-s − 0.809·4-s − 1.17·5-s + 0.252·6-s − 1.13·7-s − 0.790·8-s + 0.333·9-s − 0.511·10-s − 0.467·12-s − 0.489·13-s − 0.495·14-s − 0.675·15-s + 0.463·16-s − 0.392·17-s + 0.145·18-s − 1.34·19-s + 0.947·20-s − 0.654·21-s + 0.723·23-s − 0.456·24-s + 0.370·25-s − 0.213·26-s + 0.192·27-s + 0.917·28-s − 0.830·29-s − 0.295·30-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 - 0.618T + 2T^{2} \) |
| 5 | \( 1 + 2.61T + 5T^{2} \) |
| 7 | \( 1 + 3T + 7T^{2} \) |
| 13 | \( 1 + 1.76T + 13T^{2} \) |
| 17 | \( 1 + 1.61T + 17T^{2} \) |
| 19 | \( 1 + 5.85T + 19T^{2} \) |
| 23 | \( 1 - 3.47T + 23T^{2} \) |
| 29 | \( 1 + 4.47T + 29T^{2} \) |
| 31 | \( 1 - 2.85T + 31T^{2} \) |
| 37 | \( 1 - 0.236T + 37T^{2} \) |
| 41 | \( 1 - 11.9T + 41T^{2} \) |
| 43 | \( 1 + 6.23T + 43T^{2} \) |
| 47 | \( 1 - 1.61T + 47T^{2} \) |
| 53 | \( 1 + 9.61T + 53T^{2} \) |
| 59 | \( 1 - 10.3T + 59T^{2} \) |
| 61 | \( 1 + 7.85T + 61T^{2} \) |
| 67 | \( 1 + 9.56T + 67T^{2} \) |
| 71 | \( 1 + 5.56T + 71T^{2} \) |
| 73 | \( 1 - 3.23T + 73T^{2} \) |
| 79 | \( 1 + 9.47T + 79T^{2} \) |
| 83 | \( 1 + 0.708T + 83T^{2} \) |
| 89 | \( 1 - 0.527T + 89T^{2} \) |
| 97 | \( 1 + 14.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.03365687565380218311807407594, −9.853554053915169086297688218088, −9.072922961471080520082514363765, −8.262328614028359519534830216125, −7.23902800568546240059971405639, −6.12188962970225857637937319661, −4.61258388867120864853280197895, −3.86764959082198904621871401652, −2.88545461561253685689728106456, 0,
2.88545461561253685689728106456, 3.86764959082198904621871401652, 4.61258388867120864853280197895, 6.12188962970225857637937319661, 7.23902800568546240059971405639, 8.262328614028359519534830216125, 9.072922961471080520082514363765, 9.853554053915169086297688218088, 11.03365687565380218311807407594