L(s) = 1 | + 2.23·2-s + 3-s + 3.00·4-s + 2·5-s + 2.23·6-s − 4.47·7-s + 2.23·8-s + 9-s + 4.47·10-s + 3.00·12-s − 10.0·14-s + 2·15-s − 0.999·16-s + 4.47·17-s + 2.23·18-s − 4.47·19-s + 6.00·20-s − 4.47·21-s − 4·23-s + 2.23·24-s − 25-s + 27-s − 13.4·28-s + 4.47·29-s + 4.47·30-s − 6.70·32-s + 10.0·34-s + ⋯ |
L(s) = 1 | + 1.58·2-s + 0.577·3-s + 1.50·4-s + 0.894·5-s + 0.912·6-s − 1.69·7-s + 0.790·8-s + 0.333·9-s + 1.41·10-s + 0.866·12-s − 2.67·14-s + 0.516·15-s − 0.249·16-s + 1.08·17-s + 0.527·18-s − 1.02·19-s + 1.34·20-s − 0.975·21-s − 0.834·23-s + 0.456·24-s − 0.200·25-s + 0.192·27-s − 2.53·28-s + 0.830·29-s + 0.816·30-s − 1.18·32-s + 1.71·34-s + ⋯ |
Λ(s)=(=(363s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(363s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.456194644 |
L(21) |
≈ |
3.456194644 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 11 | 1 |
good | 2 | 1−2.23T+2T2 |
| 5 | 1−2T+5T2 |
| 7 | 1+4.47T+7T2 |
| 13 | 1+13T2 |
| 17 | 1−4.47T+17T2 |
| 19 | 1+4.47T+19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1−4.47T+29T2 |
| 31 | 1+31T2 |
| 37 | 1−2T+37T2 |
| 41 | 1+4.47T+41T2 |
| 43 | 1−4.47T+43T2 |
| 47 | 1−8T+47T2 |
| 53 | 1−6T+53T2 |
| 59 | 1+59T2 |
| 61 | 1−8.94T+61T2 |
| 67 | 1+12T+67T2 |
| 71 | 1+8T+71T2 |
| 73 | 1+8.94T+73T2 |
| 79 | 1−13.4T+79T2 |
| 83 | 1+8.94T+83T2 |
| 89 | 1+14T+89T2 |
| 97 | 1−2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.96813214338545798912435604191, −10.38104632610696553786721885962, −9.800274452758984125650845855443, −8.768845110335529202437101245554, −7.21034934891176342175331080954, −6.21714992398416050933747042136, −5.73387068866665816679127942391, −4.23324492548299928706192072988, −3.27526656858308043035087270177, −2.34514472825920689329196705733,
2.34514472825920689329196705733, 3.27526656858308043035087270177, 4.23324492548299928706192072988, 5.73387068866665816679127942391, 6.21714992398416050933747042136, 7.21034934891176342175331080954, 8.768845110335529202437101245554, 9.800274452758984125650845855443, 10.38104632610696553786721885962, 11.96813214338545798912435604191