Properties

Label 2-363-1.1-c1-0-1
Degree $2$
Conductor $363$
Sign $1$
Analytic cond. $2.89856$
Root an. cond. $1.70251$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.52·2-s + 3-s + 4.37·4-s − 2.37·5-s − 2.52·6-s − 0.792·7-s − 5.98·8-s + 9-s + 5.98·10-s + 4.37·12-s + 4.10·13-s + 2·14-s − 2.37·15-s + 6.37·16-s + 5.98·17-s − 2.52·18-s − 4.25·19-s − 10.3·20-s − 0.792·21-s + 2·23-s − 5.98·24-s + 0.627·25-s − 10.3·26-s + 27-s − 3.46·28-s + 2.52·29-s + 5.98·30-s + ⋯
L(s)  = 1  − 1.78·2-s + 0.577·3-s + 2.18·4-s − 1.06·5-s − 1.03·6-s − 0.299·7-s − 2.11·8-s + 0.333·9-s + 1.89·10-s + 1.26·12-s + 1.13·13-s + 0.534·14-s − 0.612·15-s + 1.59·16-s + 1.45·17-s − 0.594·18-s − 0.976·19-s − 2.31·20-s − 0.172·21-s + 0.417·23-s − 1.22·24-s + 0.125·25-s − 2.03·26-s + 0.192·27-s − 0.654·28-s + 0.468·29-s + 1.09·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(2.89856\)
Root analytic conductor: \(1.70251\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 363,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6192316075\)
\(L(\frac12)\) \(\approx\) \(0.6192316075\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
11 \( 1 \)
good2 \( 1 + 2.52T + 2T^{2} \)
5 \( 1 + 2.37T + 5T^{2} \)
7 \( 1 + 0.792T + 7T^{2} \)
13 \( 1 - 4.10T + 13T^{2} \)
17 \( 1 - 5.98T + 17T^{2} \)
19 \( 1 + 4.25T + 19T^{2} \)
23 \( 1 - 2T + 23T^{2} \)
29 \( 1 - 2.52T + 29T^{2} \)
31 \( 1 - 7.37T + 31T^{2} \)
37 \( 1 - 5T + 37T^{2} \)
41 \( 1 - 5.69T + 41T^{2} \)
43 \( 1 - 6.63T + 43T^{2} \)
47 \( 1 + 1.25T + 47T^{2} \)
53 \( 1 - 13.1T + 53T^{2} \)
59 \( 1 + 6T + 59T^{2} \)
61 \( 1 - 2.67T + 61T^{2} \)
67 \( 1 - 16.1T + 67T^{2} \)
71 \( 1 - 0.744T + 71T^{2} \)
73 \( 1 + 7.42T + 73T^{2} \)
79 \( 1 + 5.84T + 79T^{2} \)
83 \( 1 + 8.51T + 83T^{2} \)
89 \( 1 + 6.37T + 89T^{2} \)
97 \( 1 + 12.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.14482558751290845869326472592, −10.30861232147378039791530806874, −9.478668154943856534217489353053, −8.447189326746436467389406982449, −8.082886010611771925236573919365, −7.17610448933405091698685460594, −6.13183667544622170210800127864, −4.01586908165467332267389728373, −2.78563178180183564246620900160, −1.01647366498656575723404249336, 1.01647366498656575723404249336, 2.78563178180183564246620900160, 4.01586908165467332267389728373, 6.13183667544622170210800127864, 7.17610448933405091698685460594, 8.082886010611771925236573919365, 8.447189326746436467389406982449, 9.478668154943856534217489353053, 10.30861232147378039791530806874, 11.14482558751290845869326472592

Graph of the $Z$-function along the critical line