L(s) = 1 | + (1.72 − 0.158i)3-s + (0.5 − 0.866i)5-s + (0.724 + 1.25i)7-s + (2.94 − 0.548i)9-s + (0.724 − 1.57i)15-s − 2·17-s + 2.89·19-s + (1.44 + 2.04i)21-s + (1.27 − 2.20i)23-s + (−0.499 − 0.866i)25-s + (4.99 − 1.41i)27-s + (−3.94 − 6.84i)29-s + (−5.44 + 9.43i)31-s + 1.44·35-s − 6·37-s + ⋯ |
L(s) = 1 | + (0.995 − 0.0917i)3-s + (0.223 − 0.387i)5-s + (0.273 + 0.474i)7-s + (0.983 − 0.182i)9-s + (0.187 − 0.406i)15-s − 0.485·17-s + 0.665·19-s + (0.316 + 0.447i)21-s + (0.265 − 0.460i)23-s + (−0.0999 − 0.173i)25-s + (0.962 − 0.272i)27-s + (−0.733 − 1.27i)29-s + (−0.978 + 1.69i)31-s + 0.245·35-s − 0.986·37-s + ⋯ |
Λ(s)=(=(360s/2ΓC(s)L(s)(0.986+0.164i)Λ(2−s)
Λ(s)=(=(360s/2ΓC(s+1/2)L(s)(0.986+0.164i)Λ(1−s)
Degree: |
2 |
Conductor: |
360
= 23⋅32⋅5
|
Sign: |
0.986+0.164i
|
Analytic conductor: |
2.87461 |
Root analytic conductor: |
1.69546 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ360(121,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 360, ( :1/2), 0.986+0.164i)
|
Particular Values
L(1) |
≈ |
1.94747−0.161330i |
L(21) |
≈ |
1.94747−0.161330i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−1.72+0.158i)T |
| 5 | 1+(−0.5+0.866i)T |
good | 7 | 1+(−0.724−1.25i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−5.5+9.52i)T2 |
| 13 | 1+(−6.5−11.2i)T2 |
| 17 | 1+2T+17T2 |
| 19 | 1−2.89T+19T2 |
| 23 | 1+(−1.27+2.20i)T+(−11.5−19.9i)T2 |
| 29 | 1+(3.94+6.84i)T+(−14.5+25.1i)T2 |
| 31 | 1+(5.44−9.43i)T+(−15.5−26.8i)T2 |
| 37 | 1+6T+37T2 |
| 41 | 1+(−0.0505+0.0874i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−3.89−6.75i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−2.27−3.94i)T+(−23.5+40.7i)T2 |
| 53 | 1+11.7T+53T2 |
| 59 | 1+(−5.44+9.43i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−1.5−2.59i)T+(−30.5+52.8i)T2 |
| 67 | 1+(5.62−9.74i)T+(−33.5−58.0i)T2 |
| 71 | 1+9.79T+71T2 |
| 73 | 1+5.79T+73T2 |
| 79 | 1+(1.44+2.51i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−0.275−0.476i)T+(−41.5+71.8i)T2 |
| 89 | 1+16.7T+89T2 |
| 97 | 1+(1+1.73i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.48030508330562746998505522395, −10.33025784353295685360432515962, −9.330842616536533941992812676537, −8.737107781005639933990326748194, −7.81992017963868845293862917471, −6.80474761404584793533608593350, −5.46436336555606318863860802678, −4.31804690430714939877816087568, −2.98189148802267898869008997397, −1.69963129427529424521091621478,
1.80144596751132884212957624817, 3.18251269739172063177625062524, 4.21677105280676442361984230932, 5.56119023600477559060575936366, 7.07107515254452554170514653658, 7.58033622860044370313005924892, 8.803629329622636128334258934669, 9.511493626184509553261518477049, 10.49969951836145950144410732875, 11.26024076594844072621895541245