L(s) = 1 | + (−0.724 − 1.57i)3-s + (0.5 − 0.866i)5-s + (−1.72 − 2.98i)7-s + (−1.94 + 2.28i)9-s + (−1.72 − 0.158i)15-s − 2·17-s − 6.89·19-s + (−3.44 + 4.87i)21-s + (3.72 − 6.45i)23-s + (−0.499 − 0.866i)25-s + (5.00 + 1.41i)27-s + (0.949 + 1.64i)29-s + (−0.550 + 0.953i)31-s − 3.44·35-s − 6·37-s + ⋯ |
L(s) = 1 | + (−0.418 − 0.908i)3-s + (0.223 − 0.387i)5-s + (−0.651 − 1.12i)7-s + (−0.649 + 0.760i)9-s + (−0.445 − 0.0410i)15-s − 0.485·17-s − 1.58·19-s + (−0.752 + 1.06i)21-s + (0.776 − 1.34i)23-s + (−0.0999 − 0.173i)25-s + (0.962 + 0.272i)27-s + (0.176 + 0.305i)29-s + (−0.0988 + 0.171i)31-s − 0.583·35-s − 0.986·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.870 + 0.491i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.870 + 0.491i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.205140 - 0.779973i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.205140 - 0.779973i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.724 + 1.57i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
good | 7 | \( 1 + (1.72 + 2.98i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 2T + 17T^{2} \) |
| 19 | \( 1 + 6.89T + 19T^{2} \) |
| 23 | \( 1 + (-3.72 + 6.45i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.949 - 1.64i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.550 - 0.953i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 6T + 37T^{2} \) |
| 41 | \( 1 + (-4.94 + 8.57i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.89 + 10.2i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.72 - 8.18i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 7.79T + 53T^{2} \) |
| 59 | \( 1 + (-0.550 + 0.953i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.5 - 2.59i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.62 + 11.4i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 9.79T + 71T^{2} \) |
| 73 | \( 1 - 13.7T + 73T^{2} \) |
| 79 | \( 1 + (-3.44 - 5.97i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.72 - 4.71i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 2.79T + 89T^{2} \) |
| 97 | \( 1 + (1 + 1.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.77799201073929203241526593190, −10.56543134793175215157768563108, −9.061838482737023859914201070831, −8.213947696406722007585818302209, −6.92719753273848474696197163068, −6.56996510580662521243563312487, −5.21943140144790973909746308195, −3.99071748656861140630327823532, −2.26102702955856286519722017493, −0.55773988127577540184293511907,
2.50688123047966187989500561819, 3.70179882711711695871574156615, 5.03210393698369414987593930865, 5.99258756844737649999135968223, 6.73509164905450659471738177886, 8.410216165895431156306392478615, 9.235493685657644308687218149478, 9.931462300792670418285618445412, 10.92573697691591730852676528775, 11.63112352124049156625588442257