L(s) = 1 | + (−0.724 − 1.57i)3-s + (0.5 − 0.866i)5-s + (−1.72 − 2.98i)7-s + (−1.94 + 2.28i)9-s + (−1.72 − 0.158i)15-s − 2·17-s − 6.89·19-s + (−3.44 + 4.87i)21-s + (3.72 − 6.45i)23-s + (−0.499 − 0.866i)25-s + (5.00 + 1.41i)27-s + (0.949 + 1.64i)29-s + (−0.550 + 0.953i)31-s − 3.44·35-s − 6·37-s + ⋯ |
L(s) = 1 | + (−0.418 − 0.908i)3-s + (0.223 − 0.387i)5-s + (−0.651 − 1.12i)7-s + (−0.649 + 0.760i)9-s + (−0.445 − 0.0410i)15-s − 0.485·17-s − 1.58·19-s + (−0.752 + 1.06i)21-s + (0.776 − 1.34i)23-s + (−0.0999 − 0.173i)25-s + (0.962 + 0.272i)27-s + (0.176 + 0.305i)29-s + (−0.0988 + 0.171i)31-s − 0.583·35-s − 0.986·37-s + ⋯ |
Λ(s)=(=(360s/2ΓC(s)L(s)(−0.870+0.491i)Λ(2−s)
Λ(s)=(=(360s/2ΓC(s+1/2)L(s)(−0.870+0.491i)Λ(1−s)
Degree: |
2 |
Conductor: |
360
= 23⋅32⋅5
|
Sign: |
−0.870+0.491i
|
Analytic conductor: |
2.87461 |
Root analytic conductor: |
1.69546 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ360(121,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 360, ( :1/2), −0.870+0.491i)
|
Particular Values
L(1) |
≈ |
0.205140−0.779973i |
L(21) |
≈ |
0.205140−0.779973i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.724+1.57i)T |
| 5 | 1+(−0.5+0.866i)T |
good | 7 | 1+(1.72+2.98i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−5.5+9.52i)T2 |
| 13 | 1+(−6.5−11.2i)T2 |
| 17 | 1+2T+17T2 |
| 19 | 1+6.89T+19T2 |
| 23 | 1+(−3.72+6.45i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−0.949−1.64i)T+(−14.5+25.1i)T2 |
| 31 | 1+(0.550−0.953i)T+(−15.5−26.8i)T2 |
| 37 | 1+6T+37T2 |
| 41 | 1+(−4.94+8.57i)T+(−20.5−35.5i)T2 |
| 43 | 1+(5.89+10.2i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−4.72−8.18i)T+(−23.5+40.7i)T2 |
| 53 | 1−7.79T+53T2 |
| 59 | 1+(−0.550+0.953i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−1.5−2.59i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−6.62+11.4i)T+(−33.5−58.0i)T2 |
| 71 | 1−9.79T+71T2 |
| 73 | 1−13.7T+73T2 |
| 79 | 1+(−3.44−5.97i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−2.72−4.71i)T+(−41.5+71.8i)T2 |
| 89 | 1−2.79T+89T2 |
| 97 | 1+(1+1.73i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.77799201073929203241526593190, −10.56543134793175215157768563108, −9.061838482737023859914201070831, −8.213947696406722007585818302209, −6.92719753273848474696197163068, −6.56996510580662521243563312487, −5.21943140144790973909746308195, −3.99071748656861140630327823532, −2.26102702955856286519722017493, −0.55773988127577540184293511907,
2.50688123047966187989500561819, 3.70179882711711695871574156615, 5.03210393698369414987593930865, 5.99258756844737649999135968223, 6.73509164905450659471738177886, 8.410216165895431156306392478615, 9.235493685657644308687218149478, 9.931462300792670418285618445412, 10.92573697691591730852676528775, 11.63112352124049156625588442257