Properties

Label 2-360-5.4-c3-0-8
Degree $2$
Conductor $360$
Sign $0.447 - 0.894i$
Analytic cond. $21.2406$
Root an. cond. $4.60876$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (10 + 5i)5-s + 10i·7-s + 46·11-s + 34i·13-s − 66i·17-s − 104·19-s + 164i·23-s + (75 + 100i)25-s + 224·29-s − 72·31-s + (−50 + 100i)35-s − 22i·37-s − 194·41-s − 108i·43-s + 480i·47-s + ⋯
L(s)  = 1  + (0.894 + 0.447i)5-s + 0.539i·7-s + 1.26·11-s + 0.725i·13-s − 0.941i·17-s − 1.25·19-s + 1.48i·23-s + (0.599 + 0.800i)25-s + 1.43·29-s − 0.417·31-s + (−0.241 + 0.482i)35-s − 0.0977i·37-s − 0.738·41-s − 0.383i·43-s + 1.48i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(360\)    =    \(2^{3} \cdot 3^{2} \cdot 5\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(21.2406\)
Root analytic conductor: \(4.60876\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{360} (289, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 360,\ (\ :3/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.232079766\)
\(L(\frac12)\) \(\approx\) \(2.232079766\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (-10 - 5i)T \)
good7 \( 1 - 10iT - 343T^{2} \)
11 \( 1 - 46T + 1.33e3T^{2} \)
13 \( 1 - 34iT - 2.19e3T^{2} \)
17 \( 1 + 66iT - 4.91e3T^{2} \)
19 \( 1 + 104T + 6.85e3T^{2} \)
23 \( 1 - 164iT - 1.21e4T^{2} \)
29 \( 1 - 224T + 2.43e4T^{2} \)
31 \( 1 + 72T + 2.97e4T^{2} \)
37 \( 1 + 22iT - 5.06e4T^{2} \)
41 \( 1 + 194T + 6.89e4T^{2} \)
43 \( 1 + 108iT - 7.95e4T^{2} \)
47 \( 1 - 480iT - 1.03e5T^{2} \)
53 \( 1 - 286iT - 1.48e5T^{2} \)
59 \( 1 - 426T + 2.05e5T^{2} \)
61 \( 1 - 698T + 2.26e5T^{2} \)
67 \( 1 - 328iT - 3.00e5T^{2} \)
71 \( 1 + 188T + 3.57e5T^{2} \)
73 \( 1 - 740iT - 3.89e5T^{2} \)
79 \( 1 + 1.16e3T + 4.93e5T^{2} \)
83 \( 1 - 412iT - 5.71e5T^{2} \)
89 \( 1 - 1.20e3T + 7.04e5T^{2} \)
97 \( 1 + 1.38e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.29538145624414838549198783694, −10.12871929808344466932678234674, −9.313642687639383407151901736328, −8.684455406410368199689175610371, −7.11514844486315936926220172683, −6.42409931247853907755329678899, −5.44267021980031410157725107356, −4.11945471170727165535028091224, −2.68614745937563140591840769981, −1.49789329027816537129462274198, 0.834383004547964715258259548850, 2.15379328365932639722440774061, 3.81778435177005600299055533724, 4.85157262227652770006547910302, 6.17964246343205437727121460810, 6.74261670605340473633676975745, 8.345636407036975257591176369287, 8.852793287731828293621754148733, 10.19301282663833798436941161575, 10.49143788510375611610392382679

Graph of the $Z$-function along the critical line