L(s) = 1 | + (10 + 5i)5-s + 10i·7-s + 46·11-s + 34i·13-s − 66i·17-s − 104·19-s + 164i·23-s + (75 + 100i)25-s + 224·29-s − 72·31-s + (−50 + 100i)35-s − 22i·37-s − 194·41-s − 108i·43-s + 480i·47-s + ⋯ |
L(s) = 1 | + (0.894 + 0.447i)5-s + 0.539i·7-s + 1.26·11-s + 0.725i·13-s − 0.941i·17-s − 1.25·19-s + 1.48i·23-s + (0.599 + 0.800i)25-s + 1.43·29-s − 0.417·31-s + (−0.241 + 0.482i)35-s − 0.0977i·37-s − 0.738·41-s − 0.383i·43-s + 1.48i·47-s + ⋯ |
Λ(s)=(=(360s/2ΓC(s)L(s)(0.447−0.894i)Λ(4−s)
Λ(s)=(=(360s/2ΓC(s+3/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
360
= 23⋅32⋅5
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
21.2406 |
Root analytic conductor: |
4.60876 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ360(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 360, ( :3/2), 0.447−0.894i)
|
Particular Values
L(2) |
≈ |
2.232079766 |
L(21) |
≈ |
2.232079766 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−10−5i)T |
good | 7 | 1−10iT−343T2 |
| 11 | 1−46T+1.33e3T2 |
| 13 | 1−34iT−2.19e3T2 |
| 17 | 1+66iT−4.91e3T2 |
| 19 | 1+104T+6.85e3T2 |
| 23 | 1−164iT−1.21e4T2 |
| 29 | 1−224T+2.43e4T2 |
| 31 | 1+72T+2.97e4T2 |
| 37 | 1+22iT−5.06e4T2 |
| 41 | 1+194T+6.89e4T2 |
| 43 | 1+108iT−7.95e4T2 |
| 47 | 1−480iT−1.03e5T2 |
| 53 | 1−286iT−1.48e5T2 |
| 59 | 1−426T+2.05e5T2 |
| 61 | 1−698T+2.26e5T2 |
| 67 | 1−328iT−3.00e5T2 |
| 71 | 1+188T+3.57e5T2 |
| 73 | 1−740iT−3.89e5T2 |
| 79 | 1+1.16e3T+4.93e5T2 |
| 83 | 1−412iT−5.71e5T2 |
| 89 | 1−1.20e3T+7.04e5T2 |
| 97 | 1+1.38e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.29538145624414838549198783694, −10.12871929808344466932678234674, −9.313642687639383407151901736328, −8.684455406410368199689175610371, −7.11514844486315936926220172683, −6.42409931247853907755329678899, −5.44267021980031410157725107356, −4.11945471170727165535028091224, −2.68614745937563140591840769981, −1.49789329027816537129462274198,
0.834383004547964715258259548850, 2.15379328365932639722440774061, 3.81778435177005600299055533724, 4.85157262227652770006547910302, 6.17964246343205437727121460810, 6.74261670605340473633676975745, 8.345636407036975257591176369287, 8.852793287731828293621754148733, 10.19301282663833798436941161575, 10.49143788510375611610392382679