L(s) = 1 | + 4.87·2-s − 4.14·3-s + 15.7·4-s − 20.2·6-s + 37.6·8-s − 9.78·9-s + 36.9·11-s − 65.2·12-s − 61.3·13-s + 57.7·16-s − 44.8·17-s − 47.6·18-s + 139.·19-s + 180.·22-s − 217.·23-s − 156.·24-s − 298.·26-s + 152.·27-s − 33.8·29-s − 124.·31-s − 20.2·32-s − 153.·33-s − 218.·34-s − 153.·36-s − 237.·37-s + 680.·38-s + 254.·39-s + ⋯ |
L(s) = 1 | + 1.72·2-s − 0.798·3-s + 1.96·4-s − 1.37·6-s + 1.66·8-s − 0.362·9-s + 1.01·11-s − 1.57·12-s − 1.30·13-s + 0.902·16-s − 0.639·17-s − 0.624·18-s + 1.68·19-s + 1.74·22-s − 1.97·23-s − 1.33·24-s − 2.25·26-s + 1.08·27-s − 0.216·29-s − 0.720·31-s − 0.111·32-s − 0.809·33-s − 1.10·34-s − 0.712·36-s − 1.05·37-s + 2.90·38-s + 1.04·39-s + ⋯ |
Λ(s)=(=(1225s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1225s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1 |
good | 2 | 1−4.87T+8T2 |
| 3 | 1+4.14T+27T2 |
| 11 | 1−36.9T+1.33e3T2 |
| 13 | 1+61.3T+2.19e3T2 |
| 17 | 1+44.8T+4.91e3T2 |
| 19 | 1−139.T+6.85e3T2 |
| 23 | 1+217.T+1.21e4T2 |
| 29 | 1+33.8T+2.43e4T2 |
| 31 | 1+124.T+2.97e4T2 |
| 37 | 1+237.T+5.06e4T2 |
| 41 | 1+195.T+6.89e4T2 |
| 43 | 1−343.T+7.95e4T2 |
| 47 | 1−16.8T+1.03e5T2 |
| 53 | 1+346.T+1.48e5T2 |
| 59 | 1+135.T+2.05e5T2 |
| 61 | 1+490.T+2.26e5T2 |
| 67 | 1+477.T+3.00e5T2 |
| 71 | 1−45.2T+3.57e5T2 |
| 73 | 1−100.T+3.89e5T2 |
| 79 | 1−880.T+4.93e5T2 |
| 83 | 1+1.15e3T+5.71e5T2 |
| 89 | 1+619.T+7.04e5T2 |
| 97 | 1+231.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.067176368169110199107479587714, −7.66588133764104473851040105360, −6.90577747017518638876188848603, −6.10266817647913224128306225781, −5.47377215237084821810903600770, −4.74744492993242245056402390935, −3.88066246383256787242973696272, −2.90755977607247918896845824918, −1.76817491752824106549789722053, 0,
1.76817491752824106549789722053, 2.90755977607247918896845824918, 3.88066246383256787242973696272, 4.74744492993242245056402390935, 5.47377215237084821810903600770, 6.10266817647913224128306225781, 6.90577747017518638876188848603, 7.66588133764104473851040105360, 9.067176368169110199107479587714