L(s) = 1 | + (−1.68 + 0.452i)2-s + (0.608 − 0.793i)3-s + (0.909 − 0.525i)4-s + (0.277 − 2.10i)5-s + (−0.668 + 1.61i)6-s + (2.14 − 1.55i)7-s + (1.17 − 1.17i)8-s + (−0.258 − 0.965i)9-s + (0.484 + 3.67i)10-s + (−5.06 + 0.667i)11-s + (0.137 − 1.04i)12-s + 0.853i·13-s + (−2.91 + 3.58i)14-s + (−1.50 − 1.50i)15-s + (−2.49 + 4.32i)16-s + (2.60 − 3.19i)17-s + ⋯ |
L(s) = 1 | + (−1.19 + 0.319i)2-s + (0.351 − 0.458i)3-s + (0.454 − 0.262i)4-s + (0.123 − 0.941i)5-s + (−0.272 + 0.658i)6-s + (0.809 − 0.586i)7-s + (0.414 − 0.414i)8-s + (−0.0862 − 0.321i)9-s + (0.153 + 1.16i)10-s + (−1.52 + 0.201i)11-s + (0.0395 − 0.300i)12-s + 0.236i·13-s + (−0.778 + 0.958i)14-s + (−0.387 − 0.387i)15-s + (−0.624 + 1.08i)16-s + (0.630 − 0.775i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 357 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.197 + 0.980i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 357 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.197 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.431379 - 0.526972i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.431379 - 0.526972i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.608 + 0.793i)T \) |
| 7 | \( 1 + (-2.14 + 1.55i)T \) |
| 17 | \( 1 + (-2.60 + 3.19i)T \) |
good | 2 | \( 1 + (1.68 - 0.452i)T + (1.73 - i)T^{2} \) |
| 5 | \( 1 + (-0.277 + 2.10i)T + (-4.82 - 1.29i)T^{2} \) |
| 11 | \( 1 + (5.06 - 0.667i)T + (10.6 - 2.84i)T^{2} \) |
| 13 | \( 1 - 0.853iT - 13T^{2} \) |
| 19 | \( 1 + (2.98 - 0.799i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (3.68 + 4.80i)T + (-5.95 + 22.2i)T^{2} \) |
| 29 | \( 1 + (3.11 - 1.28i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (-4.55 + 5.93i)T + (-8.02 - 29.9i)T^{2} \) |
| 37 | \( 1 + (3.99 + 0.525i)T + (35.7 + 9.57i)T^{2} \) |
| 41 | \( 1 + (-2.06 - 0.854i)T + (28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (-4.32 + 4.32i)T - 43iT^{2} \) |
| 47 | \( 1 + (1.22 + 0.708i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.02 + 7.56i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (5.92 + 1.58i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (1.98 - 1.51i)T + (15.7 - 58.9i)T^{2} \) |
| 67 | \( 1 + (-3.97 - 6.89i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.52 - 3.67i)T + (-50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (-4.66 - 3.57i)T + (18.8 + 70.5i)T^{2} \) |
| 79 | \( 1 + (1.69 + 2.21i)T + (-20.4 + 76.3i)T^{2} \) |
| 83 | \( 1 + (-8.40 - 8.40i)T + 83iT^{2} \) |
| 89 | \( 1 + (-13.8 - 7.99i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (11.6 - 4.84i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.84516973883784771290363625085, −10.09464510887088399231648653699, −9.151501886380842775616618351247, −8.143562327911319282566767420281, −7.920793522365414977910334421144, −6.86882895500092934385459036286, −5.30035602687863789973074497931, −4.24590443907789125141206997088, −2.13025898771611903879656623876, −0.66213358550955594070765719959,
1.98832410537360874708159081510, 3.04509886347185591410945632120, 4.82044691804603167046664193649, 5.87921463139907014284916359482, 7.59083956672449737537522366361, 8.080508465808645665793147477678, 8.948675029623045491383456798331, 10.04488628287750063300224522017, 10.62159031973184265704781732571, 11.11158114291744384973043020445