Properties

Label 2-357-119.10-c1-0-9
Degree $2$
Conductor $357$
Sign $-0.329 + 0.944i$
Analytic cond. $2.85065$
Root an. cond. $1.68838$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.58 + 0.339i)2-s + (−0.442 − 0.896i)3-s + (4.61 − 1.23i)4-s + (−3.08 + 2.70i)5-s + (1.44 + 2.16i)6-s + (−1.79 + 1.94i)7-s + (−6.69 + 2.77i)8-s + (−0.608 + 0.793i)9-s + (7.04 − 8.03i)10-s + (4.54 − 0.297i)11-s + (−3.15 − 3.59i)12-s + (−0.442 − 0.442i)13-s + (3.97 − 5.63i)14-s + (3.79 + 1.57i)15-s + (8.06 − 4.65i)16-s + (−3.90 − 1.32i)17-s + ⋯
L(s)  = 1  + (−1.82 + 0.240i)2-s + (−0.255 − 0.517i)3-s + (2.30 − 0.618i)4-s + (−1.38 + 1.21i)5-s + (0.590 + 0.884i)6-s + (−0.678 + 0.735i)7-s + (−2.36 + 0.980i)8-s + (−0.202 + 0.264i)9-s + (2.22 − 2.54i)10-s + (1.37 − 0.0898i)11-s + (−0.910 − 1.03i)12-s + (−0.122 − 0.122i)13-s + (1.06 − 1.50i)14-s + (0.979 + 0.405i)15-s + (2.01 − 1.16i)16-s + (−0.946 − 0.321i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 357 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.329 + 0.944i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 357 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.329 + 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(357\)    =    \(3 \cdot 7 \cdot 17\)
Sign: $-0.329 + 0.944i$
Analytic conductor: \(2.85065\)
Root analytic conductor: \(1.68838\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{357} (10, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 357,\ (\ :1/2),\ -0.329 + 0.944i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0536651 - 0.0755340i\)
\(L(\frac12)\) \(\approx\) \(0.0536651 - 0.0755340i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.442 + 0.896i)T \)
7 \( 1 + (1.79 - 1.94i)T \)
17 \( 1 + (3.90 + 1.32i)T \)
good2 \( 1 + (2.58 - 0.339i)T + (1.93 - 0.517i)T^{2} \)
5 \( 1 + (3.08 - 2.70i)T + (0.652 - 4.95i)T^{2} \)
11 \( 1 + (-4.54 + 0.297i)T + (10.9 - 1.43i)T^{2} \)
13 \( 1 + (0.442 + 0.442i)T + 13iT^{2} \)
19 \( 1 + (-0.178 - 1.35i)T + (-18.3 + 4.91i)T^{2} \)
23 \( 1 + (0.0864 + 0.0426i)T + (14.0 + 18.2i)T^{2} \)
29 \( 1 + (0.976 + 4.90i)T + (-26.7 + 11.0i)T^{2} \)
31 \( 1 + (6.44 - 3.17i)T + (18.8 - 24.5i)T^{2} \)
37 \( 1 + (0.0907 - 1.38i)T + (-36.6 - 4.82i)T^{2} \)
41 \( 1 + (-1.16 + 5.85i)T + (-37.8 - 15.6i)T^{2} \)
43 \( 1 + (4.24 + 10.2i)T + (-30.4 + 30.4i)T^{2} \)
47 \( 1 + (-1.65 + 6.16i)T + (-40.7 - 23.5i)T^{2} \)
53 \( 1 + (-3.05 - 3.98i)T + (-13.7 + 51.1i)T^{2} \)
59 \( 1 + (8.45 + 1.11i)T + (56.9 + 15.2i)T^{2} \)
61 \( 1 + (0.0779 + 0.229i)T + (-48.3 + 37.1i)T^{2} \)
67 \( 1 + (1.28 + 0.742i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 + (-2.41 - 1.61i)T + (27.1 + 65.5i)T^{2} \)
73 \( 1 + (-8.71 - 2.95i)T + (57.9 + 44.4i)T^{2} \)
79 \( 1 + (-1.01 + 2.05i)T + (-48.0 - 62.6i)T^{2} \)
83 \( 1 + (-0.969 + 2.34i)T + (-58.6 - 58.6i)T^{2} \)
89 \( 1 + (10.0 + 2.70i)T + (77.0 + 44.5i)T^{2} \)
97 \( 1 + (0.589 - 0.117i)T + (89.6 - 37.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.11998954389904600652514114895, −10.23628933934911942807483122610, −9.114339209873479268673529836987, −8.436527920005855429758669029592, −7.30005368430894024208723079758, −6.88151068367466138372261831838, −6.07708308391741994177492281641, −3.59465100971706058439153145009, −2.24079989829746388856498900404, −0.13289984070322615674875982028, 1.19909647856583066873502817395, 3.52843224074272858055486590990, 4.47760926078320191266546233181, 6.46829074625392112969995111837, 7.33708160907048500620026793146, 8.271020630837555282176705024345, 9.217717595320569944090762480377, 9.458033515053293132896268144185, 10.87232083427988670559165084034, 11.34010222121354712620664347802

Graph of the $Z$-function along the critical line