Properties

Label 2-357-1.1-c1-0-14
Degree $2$
Conductor $357$
Sign $-1$
Analytic cond. $2.85065$
Root an. cond. $1.68838$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.732·2-s + 3-s − 1.46·4-s − 3.73·5-s + 0.732·6-s − 7-s − 2.53·8-s + 9-s − 2.73·10-s − 5·11-s − 1.46·12-s + 3.19·13-s − 0.732·14-s − 3.73·15-s + 1.07·16-s + 17-s + 0.732·18-s − 7.19·19-s + 5.46·20-s − 21-s − 3.66·22-s − 3·23-s − 2.53·24-s + 8.92·25-s + 2.33·26-s + 27-s + 1.46·28-s + ⋯
L(s)  = 1  + 0.517·2-s + 0.577·3-s − 0.732·4-s − 1.66·5-s + 0.298·6-s − 0.377·7-s − 0.896·8-s + 0.333·9-s − 0.863·10-s − 1.50·11-s − 0.422·12-s + 0.886·13-s − 0.195·14-s − 0.963·15-s + 0.267·16-s + 0.242·17-s + 0.172·18-s − 1.65·19-s + 1.22·20-s − 0.218·21-s − 0.780·22-s − 0.625·23-s − 0.517·24-s + 1.78·25-s + 0.458·26-s + 0.192·27-s + 0.276·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 357 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 357 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(357\)    =    \(3 \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(2.85065\)
Root analytic conductor: \(1.68838\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 357,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 - T \)
good2 \( 1 - 0.732T + 2T^{2} \)
5 \( 1 + 3.73T + 5T^{2} \)
11 \( 1 + 5T + 11T^{2} \)
13 \( 1 - 3.19T + 13T^{2} \)
19 \( 1 + 7.19T + 19T^{2} \)
23 \( 1 + 3T + 23T^{2} \)
29 \( 1 - 4T + 29T^{2} \)
31 \( 1 + 4.73T + 31T^{2} \)
37 \( 1 - 4.73T + 37T^{2} \)
41 \( 1 + 11.7T + 41T^{2} \)
43 \( 1 - 9.39T + 43T^{2} \)
47 \( 1 - 4.73T + 47T^{2} \)
53 \( 1 + 5.66T + 53T^{2} \)
59 \( 1 - 2.19T + 59T^{2} \)
61 \( 1 + 6.73T + 61T^{2} \)
67 \( 1 + 11.4T + 67T^{2} \)
71 \( 1 + 3.46T + 71T^{2} \)
73 \( 1 + 3.46T + 73T^{2} \)
79 \( 1 + 0.196T + 79T^{2} \)
83 \( 1 + 12.9T + 83T^{2} \)
89 \( 1 + 12.3T + 89T^{2} \)
97 \( 1 - 13.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.01453987916948577263107904695, −10.18102636782805191840638328072, −8.761652782659469796278756010595, −8.294076737002935542744882379183, −7.44656816178385339730106048317, −6.01365118178431469274790105517, −4.62576104131150402797670106134, −3.89192594289745580346062293720, −2.94235397167953120876604826438, 0, 2.94235397167953120876604826438, 3.89192594289745580346062293720, 4.62576104131150402797670106134, 6.01365118178431469274790105517, 7.44656816178385339730106048317, 8.294076737002935542744882379183, 8.761652782659469796278756010595, 10.18102636782805191840638328072, 11.01453987916948577263107904695

Graph of the $Z$-function along the critical line