Properties

Label 2-35490-1.1-c1-0-16
Degree $2$
Conductor $35490$
Sign $1$
Analytic cond. $283.389$
Root an. cond. $16.8341$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s + 7-s − 8-s + 9-s + 10-s + 2·11-s − 12-s − 14-s + 15-s + 16-s − 5·17-s − 18-s − 2·19-s − 20-s − 21-s − 2·22-s + 23-s + 24-s + 25-s − 27-s + 28-s + 6·29-s − 30-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.603·11-s − 0.288·12-s − 0.267·14-s + 0.258·15-s + 1/4·16-s − 1.21·17-s − 0.235·18-s − 0.458·19-s − 0.223·20-s − 0.218·21-s − 0.426·22-s + 0.208·23-s + 0.204·24-s + 1/5·25-s − 0.192·27-s + 0.188·28-s + 1.11·29-s − 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35490 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35490\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(283.389\)
Root analytic conductor: \(16.8341\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35490,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.250212693\)
\(L(\frac12)\) \(\approx\) \(1.250212693\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 \)
good11 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 5 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 - T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 - 5 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
61 \( 1 + T + p T^{2} \)
67 \( 1 + 3 T + p T^{2} \)
71 \( 1 - T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 6 T + p T^{2} \)
83 \( 1 - 11 T + p T^{2} \)
89 \( 1 + 3 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.18791423869031, −14.47816763142351, −13.97288024534738, −13.26429155103407, −12.67417273832008, −12.14495929405860, −11.69149358938801, −11.09497284466769, −10.83954360827336, −10.24214954336599, −9.560540183353599, −8.883919326029099, −8.688916293763955, −7.793278992519875, −7.466781619707261, −6.652698145461042, −6.367076557785265, −5.689201081369056, −4.803050751494267, −4.344204373946054, −3.756106659539579, −2.695138270869740, −2.153696374698099, −1.153166330411543, −0.5571645425380240, 0.5571645425380240, 1.153166330411543, 2.153696374698099, 2.695138270869740, 3.756106659539579, 4.344204373946054, 4.803050751494267, 5.689201081369056, 6.367076557785265, 6.652698145461042, 7.466781619707261, 7.793278992519875, 8.688916293763955, 8.883919326029099, 9.560540183353599, 10.24214954336599, 10.83954360827336, 11.09497284466769, 11.69149358938801, 12.14495929405860, 12.67417273832008, 13.26429155103407, 13.97288024534738, 14.47816763142351, 15.18791423869031

Graph of the $Z$-function along the critical line