L(s) = 1 | + (−1 + 1.73i)5-s + (−3 − 5.19i)11-s − 6·13-s + (1 + 1.73i)17-s + (−2 + 3.46i)19-s + (−1 + 1.73i)23-s + (0.500 + 0.866i)25-s + 8·29-s + (−2 − 3.46i)31-s + (3 − 5.19i)37-s + 10·41-s − 4·43-s + (2 − 3.46i)47-s + (2 + 3.46i)53-s + 12·55-s + ⋯ |
L(s) = 1 | + (−0.447 + 0.774i)5-s + (−0.904 − 1.56i)11-s − 1.66·13-s + (0.242 + 0.420i)17-s + (−0.458 + 0.794i)19-s + (−0.208 + 0.361i)23-s + (0.100 + 0.173i)25-s + 1.48·29-s + (−0.359 − 0.622i)31-s + (0.493 − 0.854i)37-s + 1.56·41-s − 0.609·43-s + (0.291 − 0.505i)47-s + (0.274 + 0.475i)53-s + 1.61·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 + 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.162553584\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.162553584\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (1 - 1.73i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (3 + 5.19i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 6T + 13T^{2} \) |
| 17 | \( 1 + (-1 - 1.73i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2 - 3.46i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1 - 1.73i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 8T + 29T^{2} \) |
| 31 | \( 1 + (2 + 3.46i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-3 + 5.19i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 10T + 41T^{2} \) |
| 43 | \( 1 + 4T + 43T^{2} \) |
| 47 | \( 1 + (-2 + 3.46i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2 - 3.46i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-6 - 10.3i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1 + 1.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6 + 10.3i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6T + 71T^{2} \) |
| 73 | \( 1 + (-1 - 1.73i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4 + 6.92i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (-7 + 12.1i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.403407073208189605002474165311, −7.71204472913453961375092288518, −7.30748730506948330074668685119, −6.21116920818554400341986104158, −5.68188692185819798270310781399, −4.74657430411269896256017203262, −3.74935043955816335674645271539, −2.97584687203881023110663639492, −2.25900572574214636740272990688, −0.54236527448166837249654009028,
0.68141682516951546714755150837, 2.21809125443337599213833066095, 2.77495405506953136436756080208, 4.28911323581950568590629415399, 4.81902058869356988402700580510, 5.15792271346531491338176029494, 6.54699529632811106836418218097, 7.21127570555540978533765688535, 7.81835855618017360641556395425, 8.492474415400537979106175373553