L(s) = 1 | + 5-s + 2·7-s − 3·9-s + 11-s + 4·13-s − 4·17-s + 25-s + 6·29-s + 2·35-s + 2·37-s + 6·41-s + 2·43-s − 3·45-s − 3·49-s + 10·53-s + 55-s + 12·59-s + 6·61-s − 6·63-s + 4·65-s − 12·67-s − 16·71-s + 4·73-s + 2·77-s + 4·79-s + 9·81-s + 2·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 0.755·7-s − 9-s + 0.301·11-s + 1.10·13-s − 0.970·17-s + 1/5·25-s + 1.11·29-s + 0.338·35-s + 0.328·37-s + 0.937·41-s + 0.304·43-s − 0.447·45-s − 3/7·49-s + 1.37·53-s + 0.134·55-s + 1.56·59-s + 0.768·61-s − 0.755·63-s + 0.496·65-s − 1.46·67-s − 1.89·71-s + 0.468·73-s + 0.227·77-s + 0.450·79-s + 81-s + 0.219·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.218953083\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.218953083\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
| 11 | \( 1 - T \) |
good | 3 | \( 1 + p T^{2} \) |
| 7 | \( 1 - 2 T + p T^{2} \) |
| 13 | \( 1 - 4 T + p T^{2} \) |
| 17 | \( 1 + 4 T + p T^{2} \) |
| 19 | \( 1 + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 - 6 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 - 2 T + p T^{2} \) |
| 41 | \( 1 - 6 T + p T^{2} \) |
| 43 | \( 1 - 2 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 - 10 T + p T^{2} \) |
| 59 | \( 1 - 12 T + p T^{2} \) |
| 61 | \( 1 - 6 T + p T^{2} \) |
| 67 | \( 1 + 12 T + p T^{2} \) |
| 71 | \( 1 + 16 T + p T^{2} \) |
| 73 | \( 1 - 4 T + p T^{2} \) |
| 79 | \( 1 - 4 T + p T^{2} \) |
| 83 | \( 1 - 2 T + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 + 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.681248481893019626366052520084, −8.024529047224018656804148067419, −7.01662830878403000639694949514, −6.21065309577519254017565649885, −5.68794395955856140710821390140, −4.76688849631763930660689376886, −3.98574283838536461852346744841, −2.90373192213368640106241039539, −2.04007851827086244730557740485, −0.904455872065007714104909009021,
0.904455872065007714104909009021, 2.04007851827086244730557740485, 2.90373192213368640106241039539, 3.98574283838536461852346744841, 4.76688849631763930660689376886, 5.68794395955856140710821390140, 6.21065309577519254017565649885, 7.01662830878403000639694949514, 8.024529047224018656804148067419, 8.681248481893019626366052520084