L(s) = 1 | + 5-s + 2·7-s − 3·9-s + 11-s + 4·13-s − 4·17-s + 25-s + 6·29-s + 2·35-s + 2·37-s + 6·41-s + 2·43-s − 3·45-s − 3·49-s + 10·53-s + 55-s + 12·59-s + 6·61-s − 6·63-s + 4·65-s − 12·67-s − 16·71-s + 4·73-s + 2·77-s + 4·79-s + 9·81-s + 2·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 0.755·7-s − 9-s + 0.301·11-s + 1.10·13-s − 0.970·17-s + 1/5·25-s + 1.11·29-s + 0.338·35-s + 0.328·37-s + 0.937·41-s + 0.304·43-s − 0.447·45-s − 3/7·49-s + 1.37·53-s + 0.134·55-s + 1.56·59-s + 0.768·61-s − 0.755·63-s + 0.496·65-s − 1.46·67-s − 1.89·71-s + 0.468·73-s + 0.227·77-s + 0.450·79-s + 81-s + 0.219·83-s + ⋯ |
Λ(s)=(=(3520s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3520s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.218953083 |
L(21) |
≈ |
2.218953083 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 11 | 1−T |
good | 3 | 1+pT2 |
| 7 | 1−2T+pT2 |
| 13 | 1−4T+pT2 |
| 17 | 1+4T+pT2 |
| 19 | 1+pT2 |
| 23 | 1+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1−2T+pT2 |
| 47 | 1+pT2 |
| 53 | 1−10T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1−6T+pT2 |
| 67 | 1+12T+pT2 |
| 71 | 1+16T+pT2 |
| 73 | 1−4T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1−2T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1+2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.681248481893019626366052520084, −8.024529047224018656804148067419, −7.01662830878403000639694949514, −6.21065309577519254017565649885, −5.68794395955856140710821390140, −4.76688849631763930660689376886, −3.98574283838536461852346744841, −2.90373192213368640106241039539, −2.04007851827086244730557740485, −0.904455872065007714104909009021,
0.904455872065007714104909009021, 2.04007851827086244730557740485, 2.90373192213368640106241039539, 3.98574283838536461852346744841, 4.76688849631763930660689376886, 5.68794395955856140710821390140, 6.21065309577519254017565649885, 7.01662830878403000639694949514, 8.024529047224018656804148067419, 8.681248481893019626366052520084