Properties

Label 2-3520-1.1-c1-0-28
Degree 22
Conductor 35203520
Sign 11
Analytic cond. 28.107328.1073
Root an. cond. 5.301635.30163
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·7-s − 3·9-s + 11-s + 4·13-s − 4·17-s + 25-s + 6·29-s + 2·35-s + 2·37-s + 6·41-s + 2·43-s − 3·45-s − 3·49-s + 10·53-s + 55-s + 12·59-s + 6·61-s − 6·63-s + 4·65-s − 12·67-s − 16·71-s + 4·73-s + 2·77-s + 4·79-s + 9·81-s + 2·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.755·7-s − 9-s + 0.301·11-s + 1.10·13-s − 0.970·17-s + 1/5·25-s + 1.11·29-s + 0.338·35-s + 0.328·37-s + 0.937·41-s + 0.304·43-s − 0.447·45-s − 3/7·49-s + 1.37·53-s + 0.134·55-s + 1.56·59-s + 0.768·61-s − 0.755·63-s + 0.496·65-s − 1.46·67-s − 1.89·71-s + 0.468·73-s + 0.227·77-s + 0.450·79-s + 81-s + 0.219·83-s + ⋯

Functional equation

Λ(s)=(3520s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(3520s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 35203520    =    265112^{6} \cdot 5 \cdot 11
Sign: 11
Analytic conductor: 28.107328.1073
Root analytic conductor: 5.301635.30163
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 3520, ( :1/2), 1)(2,\ 3520,\ (\ :1/2),\ 1)

Particular Values

L(1)L(1) \approx 2.2189530832.218953083
L(12)L(\frac12) \approx 2.2189530832.218953083
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1T 1 - T
11 1T 1 - T
good3 1+pT2 1 + p T^{2}
7 12T+pT2 1 - 2 T + p T^{2}
13 14T+pT2 1 - 4 T + p T^{2}
17 1+4T+pT2 1 + 4 T + p T^{2}
19 1+pT2 1 + p T^{2}
23 1+pT2 1 + p T^{2}
29 16T+pT2 1 - 6 T + p T^{2}
31 1+pT2 1 + p T^{2}
37 12T+pT2 1 - 2 T + p T^{2}
41 16T+pT2 1 - 6 T + p T^{2}
43 12T+pT2 1 - 2 T + p T^{2}
47 1+pT2 1 + p T^{2}
53 110T+pT2 1 - 10 T + p T^{2}
59 112T+pT2 1 - 12 T + p T^{2}
61 16T+pT2 1 - 6 T + p T^{2}
67 1+12T+pT2 1 + 12 T + p T^{2}
71 1+16T+pT2 1 + 16 T + p T^{2}
73 14T+pT2 1 - 4 T + p T^{2}
79 14T+pT2 1 - 4 T + p T^{2}
83 12T+pT2 1 - 2 T + p T^{2}
89 16T+pT2 1 - 6 T + p T^{2}
97 1+2T+pT2 1 + 2 T + p T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.681248481893019626366052520084, −8.024529047224018656804148067419, −7.01662830878403000639694949514, −6.21065309577519254017565649885, −5.68794395955856140710821390140, −4.76688849631763930660689376886, −3.98574283838536461852346744841, −2.90373192213368640106241039539, −2.04007851827086244730557740485, −0.904455872065007714104909009021, 0.904455872065007714104909009021, 2.04007851827086244730557740485, 2.90373192213368640106241039539, 3.98574283838536461852346744841, 4.76688849631763930660689376886, 5.68794395955856140710821390140, 6.21065309577519254017565649885, 7.01662830878403000639694949514, 8.024529047224018656804148067419, 8.681248481893019626366052520084

Graph of the ZZ-function along the critical line