L(s) = 1 | + (−1.04 − 1.04i)2-s + 0.180i·4-s + (1.27 + 1.27i)5-s + (2.33 + 2.33i)7-s + (−1.90 + 1.90i)8-s − 2.65i·10-s + (−3.47 + 3.47i)11-s + (0.619 + 3.55i)13-s − 4.87i·14-s + 4.32·16-s − 3.61·17-s + (−4.11 + 4.11i)19-s + (−0.229 + 0.229i)20-s + 7.26·22-s + 7.41·23-s + ⋯ |
L(s) = 1 | + (−0.738 − 0.738i)2-s + 0.0900i·4-s + (0.569 + 0.569i)5-s + (0.881 + 0.881i)7-s + (−0.671 + 0.671i)8-s − 0.840i·10-s + (−1.04 + 1.04i)11-s + (0.171 + 0.985i)13-s − 1.30i·14-s + 1.08·16-s − 0.877·17-s + (−0.943 + 0.943i)19-s + (−0.0512 + 0.0512i)20-s + 1.54·22-s + 1.54·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.893 - 0.449i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.893 - 0.449i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.883211 + 0.209909i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.883211 + 0.209909i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 + (-0.619 - 3.55i)T \) |
good | 2 | \( 1 + (1.04 + 1.04i)T + 2iT^{2} \) |
| 5 | \( 1 + (-1.27 - 1.27i)T + 5iT^{2} \) |
| 7 | \( 1 + (-2.33 - 2.33i)T + 7iT^{2} \) |
| 11 | \( 1 + (3.47 - 3.47i)T - 11iT^{2} \) |
| 17 | \( 1 + 3.61T + 17T^{2} \) |
| 19 | \( 1 + (4.11 - 4.11i)T - 19iT^{2} \) |
| 23 | \( 1 - 7.41T + 23T^{2} \) |
| 29 | \( 1 + 0.458iT - 29T^{2} \) |
| 31 | \( 1 + (-4.25 + 4.25i)T - 31iT^{2} \) |
| 37 | \( 1 + (3.35 + 3.35i)T + 37iT^{2} \) |
| 41 | \( 1 + (-3.47 - 3.47i)T + 41iT^{2} \) |
| 43 | \( 1 - 4.90iT - 43T^{2} \) |
| 47 | \( 1 + (-8.36 + 8.36i)T - 47iT^{2} \) |
| 53 | \( 1 + 8.48iT - 53T^{2} \) |
| 59 | \( 1 + (-0.117 + 0.117i)T - 59iT^{2} \) |
| 61 | \( 1 + 6.49T + 61T^{2} \) |
| 67 | \( 1 + (2.08 - 2.08i)T - 67iT^{2} \) |
| 71 | \( 1 + (-8.69 - 8.69i)T + 71iT^{2} \) |
| 73 | \( 1 + (-2.50 - 2.50i)T + 73iT^{2} \) |
| 79 | \( 1 - 4.07T + 79T^{2} \) |
| 83 | \( 1 + (8.79 + 8.79i)T + 83iT^{2} \) |
| 89 | \( 1 + (2.66 - 2.66i)T - 89iT^{2} \) |
| 97 | \( 1 + (2.72 - 2.72i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.28698646848013015567766139773, −10.62213012723787104218568244218, −9.830066973699350564452897506188, −8.934457209470489346975002659843, −8.158425807553927293200447046604, −6.78200524777919289263869095164, −5.68133568387324432044115726388, −4.60549966403993002135314025064, −2.46549710179166364932150278314, −1.96152753393635012458125881323,
0.809017025028034934033300748625, 2.97285541851702604336647345513, 4.64344677881896662644630836444, 5.65555989198650323903481767558, 6.86228434257218741688866253892, 7.78182693664430114379559574774, 8.572954932713810153537419984743, 9.152217006497815902540236046107, 10.68822663381103517045311523172, 10.86876557729165270295952780925