L(s) = 1 | + 2.65·2-s + 5.05·4-s + (−0.324 − 0.561i)5-s + (−0.773 − 1.34i)7-s + 8.11·8-s + (−0.861 − 1.49i)10-s − 5.07·11-s + (−0.445 + 3.57i)13-s + (−2.05 − 3.56i)14-s + 11.4·16-s + (0.103 − 0.179i)17-s + (−1.79 + 3.10i)19-s + (−1.63 − 2.84i)20-s − 13.4·22-s + (−1.60 + 2.77i)23-s + ⋯ |
L(s) = 1 | + 1.87·2-s + 2.52·4-s + (−0.145 − 0.251i)5-s + (−0.292 − 0.506i)7-s + 2.86·8-s + (−0.272 − 0.471i)10-s − 1.52·11-s + (−0.123 + 0.992i)13-s + (−0.549 − 0.951i)14-s + 2.86·16-s + (0.0251 − 0.0436i)17-s + (−0.411 + 0.713i)19-s + (−0.366 − 0.635i)20-s − 2.87·22-s + (−0.333 + 0.578i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 + 0.145i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.989 + 0.145i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.50294 - 0.256947i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.50294 - 0.256947i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 + (0.445 - 3.57i)T \) |
good | 2 | \( 1 - 2.65T + 2T^{2} \) |
| 5 | \( 1 + (0.324 + 0.561i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (0.773 + 1.34i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 5.07T + 11T^{2} \) |
| 17 | \( 1 + (-0.103 + 0.179i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.79 - 3.10i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.60 - 2.77i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 6.83T + 29T^{2} \) |
| 31 | \( 1 + (-1.58 - 2.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4.71 + 8.16i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (4.30 - 7.44i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.99 + 5.19i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.42 + 2.47i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 2.48T + 53T^{2} \) |
| 59 | \( 1 - 2.98T + 59T^{2} \) |
| 61 | \( 1 + (4.02 + 6.96i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.47 - 4.28i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.787 + 1.36i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 3.03T + 73T^{2} \) |
| 79 | \( 1 + (-3.23 + 5.60i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (1.24 - 2.15i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-1.76 - 3.05i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.69 - 8.12i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.90768042218623563061874560671, −10.74826974092493917171175766545, −10.13648963908755417045099064009, −8.336029713329511338001316307075, −7.25761672131073497197376424247, −6.41621024023740924268449715183, −5.30095316649328098183706259481, −4.49209285506940854681326062961, −3.44998432716397151898763526622, −2.19130491895488574946516365393,
2.53985507527979143280938304461, 3.16314402864454995262157977352, 4.67326347644742149860713989399, 5.40120242277655537479055908766, 6.34958473722685175886149289437, 7.35251525349053067027229969586, 8.383391057522815434850340678022, 10.23647997490535502436809948165, 10.78438117434610649349425137791, 11.85384947892262497514965889416