| L(s) = 1 | + (1.41 − 0.818i)2-s + (0.338 − 0.587i)4-s + (0.950 + 0.548i)5-s + (2.77 − 1.60i)7-s + 2.16i·8-s + 1.79·10-s + (−1.52 + 0.879i)11-s + (1.37 − 3.33i)13-s + (2.62 − 4.54i)14-s + (2.44 + 4.24i)16-s − 1.47·17-s + 3.61i·19-s + (0.644 − 0.371i)20-s + (−1.43 + 2.49i)22-s + (2.34 − 4.06i)23-s + ⋯ |
| L(s) = 1 | + (1.00 − 0.578i)2-s + (0.169 − 0.293i)4-s + (0.425 + 0.245i)5-s + (1.05 − 0.606i)7-s + 0.764i·8-s + 0.567·10-s + (−0.459 + 0.265i)11-s + (0.381 − 0.924i)13-s + (0.701 − 1.21i)14-s + (0.612 + 1.06i)16-s − 0.357·17-s + 0.829i·19-s + (0.144 − 0.0831i)20-s + (−0.306 + 0.531i)22-s + (0.489 − 0.847i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.881 + 0.472i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.881 + 0.472i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.32895 - 0.585052i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.32895 - 0.585052i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 13 | \( 1 + (-1.37 + 3.33i)T \) |
| good | 2 | \( 1 + (-1.41 + 0.818i)T + (1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.950 - 0.548i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-2.77 + 1.60i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.52 - 0.879i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + 1.47T + 17T^{2} \) |
| 19 | \( 1 - 3.61iT - 19T^{2} \) |
| 23 | \( 1 + (-2.34 + 4.06i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.959 + 1.66i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (5.68 + 3.28i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 11.6iT - 37T^{2} \) |
| 41 | \( 1 + (4.68 + 2.70i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.889 - 1.54i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (8.90 - 5.13i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 11.7T + 53T^{2} \) |
| 59 | \( 1 + (-4.78 - 2.76i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.985 + 1.70i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.15 - 4.13i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 5.84iT - 71T^{2} \) |
| 73 | \( 1 - 1.24iT - 73T^{2} \) |
| 79 | \( 1 + (0.242 + 0.420i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-13.4 + 7.75i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 13.4iT - 89T^{2} \) |
| 97 | \( 1 + (-5.15 + 2.97i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.38834094195597969982928570736, −10.77654661858257048914639565769, −9.962056927494064701982604600361, −8.360804921925356040331136188631, −7.80544363261147771879614669034, −6.28638630407156682960495312848, −5.18450466171961512495008135947, −4.38026382964945131912428197739, −3.15143615238460692876103761911, −1.84760556867096891918722721021,
1.82915898783126019069910290989, 3.62965845432739858250991193976, 4.98249132345931705729535927056, 5.37304482828002552972717405414, 6.53197900073851362209588794375, 7.53724101565786640189733706194, 8.819400024502104567828654478349, 9.481036626165301909755290203154, 10.93732088676993273530392068914, 11.59233586519771921965868061267