Properties

Label 2-350-5.4-c1-0-3
Degree 22
Conductor 350350
Sign 0.8940.447i0.894 - 0.447i
Analytic cond. 2.794762.79476
Root an. cond. 1.671751.67175
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s i·3-s − 4-s + 6-s + i·7-s i·8-s + 2·9-s + 3·11-s + i·12-s − 2i·13-s − 14-s + 16-s + 3i·17-s + 2i·18-s + 7·19-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.577i·3-s − 0.5·4-s + 0.408·6-s + 0.377i·7-s − 0.353i·8-s + 0.666·9-s + 0.904·11-s + 0.288i·12-s − 0.554i·13-s − 0.267·14-s + 0.250·16-s + 0.727i·17-s + 0.471i·18-s + 1.60·19-s + ⋯

Functional equation

Λ(s)=(350s/2ΓC(s)L(s)=((0.8940.447i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(350s/2ΓC(s+1/2)L(s)=((0.8940.447i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 350350    =    25272 \cdot 5^{2} \cdot 7
Sign: 0.8940.447i0.894 - 0.447i
Analytic conductor: 2.794762.79476
Root analytic conductor: 1.671751.67175
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ350(99,)\chi_{350} (99, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 350, ( :1/2), 0.8940.447i)(2,\ 350,\ (\ :1/2),\ 0.894 - 0.447i)

Particular Values

L(1)L(1) \approx 1.36870+0.323107i1.36870 + 0.323107i
L(12)L(\frac12) \approx 1.36870+0.323107i1.36870 + 0.323107i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1iT 1 - iT
5 1 1
7 1iT 1 - iT
good3 1+iT3T2 1 + iT - 3T^{2}
11 13T+11T2 1 - 3T + 11T^{2}
13 1+2iT13T2 1 + 2iT - 13T^{2}
17 13iT17T2 1 - 3iT - 17T^{2}
19 17T+19T2 1 - 7T + 19T^{2}
23 123T2 1 - 23T^{2}
29 16T+29T2 1 - 6T + 29T^{2}
31 1+4T+31T2 1 + 4T + 31T^{2}
37 18iT37T2 1 - 8iT - 37T^{2}
41 1+9T+41T2 1 + 9T + 41T^{2}
43 1+8iT43T2 1 + 8iT - 43T^{2}
47 1+6iT47T2 1 + 6iT - 47T^{2}
53 112iT53T2 1 - 12iT - 53T^{2}
59 1+12T+59T2 1 + 12T + 59T^{2}
61 1+10T+61T2 1 + 10T + 61T^{2}
67 1+7iT67T2 1 + 7iT - 67T^{2}
71 16T+71T2 1 - 6T + 71T^{2}
73 1+5iT73T2 1 + 5iT - 73T^{2}
79 1+14T+79T2 1 + 14T + 79T^{2}
83 19iT83T2 1 - 9iT - 83T^{2}
89 115T+89T2 1 - 15T + 89T^{2}
97 1+10iT97T2 1 + 10iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.92881269295989137345621351552, −10.47158512922332734982283242374, −9.568685522922711961902715967641, −8.585608861462356437225398783181, −7.64782974353942160188456327130, −6.81224159074683869205437025071, −5.92173721221202844095837243996, −4.75532718895897824441470639549, −3.38090030408863777519563102748, −1.39931523367926616697580766515, 1.38643737698553398363216844504, 3.22476268795815471130630124211, 4.22140969165292187868312288693, 5.12974229193952936245223353764, 6.67972868613410665024264603752, 7.66578944834140103048419730306, 9.137854964217652677403368906993, 9.579009428886797063318045648029, 10.47171892529940308758171697404, 11.43542080794687841361161320888

Graph of the ZZ-function along the critical line