L(s) = 1 | + i·2-s − i·3-s − 4-s + 6-s + i·7-s − i·8-s + 2·9-s + 3·11-s + i·12-s − 2i·13-s − 14-s + 16-s + 3i·17-s + 2i·18-s + 7·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.577i·3-s − 0.5·4-s + 0.408·6-s + 0.377i·7-s − 0.353i·8-s + 0.666·9-s + 0.904·11-s + 0.288i·12-s − 0.554i·13-s − 0.267·14-s + 0.250·16-s + 0.727i·17-s + 0.471i·18-s + 1.60·19-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)(0.894−0.447i)Λ(2−s)
Λ(s)=(=(350s/2ΓC(s+1/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
350
= 2⋅52⋅7
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
2.79476 |
Root analytic conductor: |
1.67175 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ350(99,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 350, ( :1/2), 0.894−0.447i)
|
Particular Values
L(1) |
≈ |
1.36870+0.323107i |
L(21) |
≈ |
1.36870+0.323107i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 5 | 1 |
| 7 | 1−iT |
good | 3 | 1+iT−3T2 |
| 11 | 1−3T+11T2 |
| 13 | 1+2iT−13T2 |
| 17 | 1−3iT−17T2 |
| 19 | 1−7T+19T2 |
| 23 | 1−23T2 |
| 29 | 1−6T+29T2 |
| 31 | 1+4T+31T2 |
| 37 | 1−8iT−37T2 |
| 41 | 1+9T+41T2 |
| 43 | 1+8iT−43T2 |
| 47 | 1+6iT−47T2 |
| 53 | 1−12iT−53T2 |
| 59 | 1+12T+59T2 |
| 61 | 1+10T+61T2 |
| 67 | 1+7iT−67T2 |
| 71 | 1−6T+71T2 |
| 73 | 1+5iT−73T2 |
| 79 | 1+14T+79T2 |
| 83 | 1−9iT−83T2 |
| 89 | 1−15T+89T2 |
| 97 | 1+10iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.92881269295989137345621351552, −10.47158512922332734982283242374, −9.568685522922711961902715967641, −8.585608861462356437225398783181, −7.64782974353942160188456327130, −6.81224159074683869205437025071, −5.92173721221202844095837243996, −4.75532718895897824441470639549, −3.38090030408863777519563102748, −1.39931523367926616697580766515,
1.38643737698553398363216844504, 3.22476268795815471130630124211, 4.22140969165292187868312288693, 5.12974229193952936245223353764, 6.67972868613410665024264603752, 7.66578944834140103048419730306, 9.137854964217652677403368906993, 9.579009428886797063318045648029, 10.47171892529940308758171697404, 11.43542080794687841361161320888