Properties

Label 2-350-175.108-c1-0-6
Degree $2$
Conductor $350$
Sign $0.725 - 0.688i$
Analytic cond. $2.79476$
Root an. cond. $1.67175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.0523 − 0.998i)2-s + (2.57 + 2.08i)3-s + (−0.994 + 0.104i)4-s + (0.713 + 2.11i)5-s + (1.95 − 2.68i)6-s + (−2.57 − 0.621i)7-s + (0.156 + 0.987i)8-s + (1.66 + 7.83i)9-s + (2.07 − 0.823i)10-s + (1.27 + 0.269i)11-s + (−2.78 − 1.80i)12-s + (−2.17 − 4.27i)13-s + (−0.486 + 2.60i)14-s + (−2.58 + 6.95i)15-s + (0.978 − 0.207i)16-s + (1.76 + 0.678i)17-s + ⋯
L(s)  = 1  + (−0.0370 − 0.706i)2-s + (1.48 + 1.20i)3-s + (−0.497 + 0.0522i)4-s + (0.319 + 0.947i)5-s + (0.796 − 1.09i)6-s + (−0.971 − 0.235i)7-s + (0.0553 + 0.349i)8-s + (0.555 + 2.61i)9-s + (0.657 − 0.260i)10-s + (0.382 + 0.0813i)11-s + (−0.803 − 0.521i)12-s + (−0.603 − 1.18i)13-s + (−0.129 + 0.695i)14-s + (−0.667 + 1.79i)15-s + (0.244 − 0.0519i)16-s + (0.428 + 0.164i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.725 - 0.688i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.725 - 0.688i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $0.725 - 0.688i$
Analytic conductor: \(2.79476\)
Root analytic conductor: \(1.67175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{350} (283, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 350,\ (\ :1/2),\ 0.725 - 0.688i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.76774 + 0.704964i\)
\(L(\frac12)\) \(\approx\) \(1.76774 + 0.704964i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.0523 + 0.998i)T \)
5 \( 1 + (-0.713 - 2.11i)T \)
7 \( 1 + (2.57 + 0.621i)T \)
good3 \( 1 + (-2.57 - 2.08i)T + (0.623 + 2.93i)T^{2} \)
11 \( 1 + (-1.27 - 0.269i)T + (10.0 + 4.47i)T^{2} \)
13 \( 1 + (2.17 + 4.27i)T + (-7.64 + 10.5i)T^{2} \)
17 \( 1 + (-1.76 - 0.678i)T + (12.6 + 11.3i)T^{2} \)
19 \( 1 + (-0.222 + 2.12i)T + (-18.5 - 3.95i)T^{2} \)
23 \( 1 + (-6.65 + 0.348i)T + (22.8 - 2.40i)T^{2} \)
29 \( 1 + (3.55 + 4.89i)T + (-8.96 + 27.5i)T^{2} \)
31 \( 1 + (-1.04 - 2.33i)T + (-20.7 + 23.0i)T^{2} \)
37 \( 1 + (-3.68 + 5.66i)T + (-15.0 - 33.8i)T^{2} \)
41 \( 1 + (-4.11 - 1.33i)T + (33.1 + 24.0i)T^{2} \)
43 \( 1 + (-1.60 - 1.60i)T + 43iT^{2} \)
47 \( 1 + (1.71 + 4.46i)T + (-34.9 + 31.4i)T^{2} \)
53 \( 1 + (-6.17 + 7.62i)T + (-11.0 - 51.8i)T^{2} \)
59 \( 1 + (8.60 + 9.55i)T + (-6.16 + 58.6i)T^{2} \)
61 \( 1 + (-3.08 - 2.77i)T + (6.37 + 60.6i)T^{2} \)
67 \( 1 + (-1.24 + 3.24i)T + (-49.7 - 44.8i)T^{2} \)
71 \( 1 + (6.06 - 4.40i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (-5.84 + 3.79i)T + (29.6 - 66.6i)T^{2} \)
79 \( 1 + (2.35 - 5.27i)T + (-52.8 - 58.7i)T^{2} \)
83 \( 1 + (13.0 - 2.06i)T + (78.9 - 25.6i)T^{2} \)
89 \( 1 + (9.61 - 10.6i)T + (-9.30 - 88.5i)T^{2} \)
97 \( 1 + (6.59 + 1.04i)T + (92.2 + 29.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.11840287089388774314173524346, −10.44705913777320133711555777441, −9.705705882851590122529551440404, −9.324834111831860461647685308752, −8.088514119477098938426889178314, −7.10619775990749856001173607419, −5.40513665918379540679872643220, −4.01948820204222645378293619318, −3.14790009291321169065853183476, −2.53994535875052177370022880701, 1.34649162358219603880464549690, 2.86156667534093542470190051981, 4.19977704147311910766119723121, 5.86168238610071134439902161705, 6.84298687319597798394969356356, 7.52397634900131120827742820080, 8.662255601260653597800646313840, 9.194702944459613539376497541125, 9.705410669604711767353959526029, 11.93797060446549589390414672937

Graph of the $Z$-function along the critical line