Properties

Label 2-350-175.108-c1-0-5
Degree $2$
Conductor $350$
Sign $-0.836 - 0.547i$
Analytic cond. $2.79476$
Root an. cond. $1.67175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0523 + 0.998i)2-s + (2.06 + 1.67i)3-s + (−0.994 + 0.104i)4-s + (−2.14 + 0.645i)5-s + (−1.56 + 2.15i)6-s + (0.156 + 2.64i)7-s + (−0.156 − 0.987i)8-s + (0.847 + 3.98i)9-s + (−0.756 − 2.10i)10-s + (−0.161 − 0.0342i)11-s + (−2.23 − 1.44i)12-s + (−2.20 − 4.32i)13-s + (−2.62 + 0.294i)14-s + (−5.50 − 2.25i)15-s + (0.978 − 0.207i)16-s + (6.17 + 2.37i)17-s + ⋯
L(s)  = 1  + (0.0370 + 0.706i)2-s + (1.19 + 0.966i)3-s + (−0.497 + 0.0522i)4-s + (−0.957 + 0.288i)5-s + (−0.638 + 0.878i)6-s + (0.0591 + 0.998i)7-s + (−0.0553 − 0.349i)8-s + (0.282 + 1.32i)9-s + (−0.239 − 0.665i)10-s + (−0.0485 − 0.0103i)11-s + (−0.644 − 0.418i)12-s + (−0.611 − 1.19i)13-s + (−0.702 + 0.0786i)14-s + (−1.42 − 0.581i)15-s + (0.244 − 0.0519i)16-s + (1.49 + 0.575i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.836 - 0.547i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.836 - 0.547i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $-0.836 - 0.547i$
Analytic conductor: \(2.79476\)
Root analytic conductor: \(1.67175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{350} (283, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 350,\ (\ :1/2),\ -0.836 - 0.547i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.443281 + 1.48705i\)
\(L(\frac12)\) \(\approx\) \(0.443281 + 1.48705i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.0523 - 0.998i)T \)
5 \( 1 + (2.14 - 0.645i)T \)
7 \( 1 + (-0.156 - 2.64i)T \)
good3 \( 1 + (-2.06 - 1.67i)T + (0.623 + 2.93i)T^{2} \)
11 \( 1 + (0.161 + 0.0342i)T + (10.0 + 4.47i)T^{2} \)
13 \( 1 + (2.20 + 4.32i)T + (-7.64 + 10.5i)T^{2} \)
17 \( 1 + (-6.17 - 2.37i)T + (12.6 + 11.3i)T^{2} \)
19 \( 1 + (0.151 - 1.44i)T + (-18.5 - 3.95i)T^{2} \)
23 \( 1 + (5.38 - 0.282i)T + (22.8 - 2.40i)T^{2} \)
29 \( 1 + (-4.25 - 5.85i)T + (-8.96 + 27.5i)T^{2} \)
31 \( 1 + (-1.99 - 4.48i)T + (-20.7 + 23.0i)T^{2} \)
37 \( 1 + (-4.73 + 7.29i)T + (-15.0 - 33.8i)T^{2} \)
41 \( 1 + (-8.15 - 2.64i)T + (33.1 + 24.0i)T^{2} \)
43 \( 1 + (4.12 + 4.12i)T + 43iT^{2} \)
47 \( 1 + (-0.247 - 0.645i)T + (-34.9 + 31.4i)T^{2} \)
53 \( 1 + (0.924 - 1.14i)T + (-11.0 - 51.8i)T^{2} \)
59 \( 1 + (-0.841 - 0.934i)T + (-6.16 + 58.6i)T^{2} \)
61 \( 1 + (1.85 + 1.66i)T + (6.37 + 60.6i)T^{2} \)
67 \( 1 + (2.27 - 5.93i)T + (-49.7 - 44.8i)T^{2} \)
71 \( 1 + (6.83 - 4.96i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (-11.6 + 7.56i)T + (29.6 - 66.6i)T^{2} \)
79 \( 1 + (-6.99 + 15.7i)T + (-52.8 - 58.7i)T^{2} \)
83 \( 1 + (2.67 - 0.423i)T + (78.9 - 25.6i)T^{2} \)
89 \( 1 + (-4.48 + 4.98i)T + (-9.30 - 88.5i)T^{2} \)
97 \( 1 + (-0.624 - 0.0988i)T + (92.2 + 29.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.10804455172755249155089268806, −10.56113520462915162589642127467, −9.898790148760667341621318996059, −8.837912712556711054527439487147, −8.105560864399108899194811279329, −7.60464326534282301741227508401, −5.92551037372211661565818893756, −4.85276352094643290596720718991, −3.65366814477199167496193751842, −2.85836620505187105299420546506, 1.02030846868612104422419507167, 2.52991235884118528809422075640, 3.72179414884735391980323294846, 4.61744662835487917313397723857, 6.65196814178393144190923381843, 7.82020992764650737651005908288, 7.939598533796375761530642718948, 9.291262943149066965771365880455, 10.03079586980556113620022140822, 11.46052030457237458674959203991

Graph of the $Z$-function along the critical line