Properties

Label 2-350-175.103-c1-0-9
Degree $2$
Conductor $350$
Sign $0.835 - 0.550i$
Analytic cond. $2.79476$
Root an. cond. $1.67175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.998 − 0.0523i)2-s + (1.80 + 2.22i)3-s + (0.994 + 0.104i)4-s + (0.724 − 2.11i)5-s + (−1.68 − 2.32i)6-s + (2.64 − 0.0482i)7-s + (−0.987 − 0.156i)8-s + (−1.08 + 5.11i)9-s + (−0.834 + 2.07i)10-s + (4.46 − 0.949i)11-s + (1.56 + 2.40i)12-s + (−3.02 − 1.54i)13-s + (−2.64 − 0.0902i)14-s + (6.02 − 2.20i)15-s + (0.978 + 0.207i)16-s + (−2.61 − 6.80i)17-s + ⋯
L(s)  = 1  + (−0.706 − 0.0370i)2-s + (1.04 + 1.28i)3-s + (0.497 + 0.0522i)4-s + (0.323 − 0.946i)5-s + (−0.688 − 0.947i)6-s + (0.999 − 0.0182i)7-s + (−0.349 − 0.0553i)8-s + (−0.362 + 1.70i)9-s + (−0.263 + 0.656i)10-s + (1.34 − 0.286i)11-s + (0.450 + 0.694i)12-s + (−0.839 − 0.427i)13-s + (−0.706 − 0.0241i)14-s + (1.55 − 0.568i)15-s + (0.244 + 0.0519i)16-s + (−0.633 − 1.64i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.835 - 0.550i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.835 - 0.550i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $0.835 - 0.550i$
Analytic conductor: \(2.79476\)
Root analytic conductor: \(1.67175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{350} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 350,\ (\ :1/2),\ 0.835 - 0.550i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.49058 + 0.446863i\)
\(L(\frac12)\) \(\approx\) \(1.49058 + 0.446863i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.998 + 0.0523i)T \)
5 \( 1 + (-0.724 + 2.11i)T \)
7 \( 1 + (-2.64 + 0.0482i)T \)
good3 \( 1 + (-1.80 - 2.22i)T + (-0.623 + 2.93i)T^{2} \)
11 \( 1 + (-4.46 + 0.949i)T + (10.0 - 4.47i)T^{2} \)
13 \( 1 + (3.02 + 1.54i)T + (7.64 + 10.5i)T^{2} \)
17 \( 1 + (2.61 + 6.80i)T + (-12.6 + 11.3i)T^{2} \)
19 \( 1 + (-0.199 - 1.90i)T + (-18.5 + 3.95i)T^{2} \)
23 \( 1 + (0.292 - 5.58i)T + (-22.8 - 2.40i)T^{2} \)
29 \( 1 + (0.582 - 0.801i)T + (-8.96 - 27.5i)T^{2} \)
31 \( 1 + (3.63 - 8.16i)T + (-20.7 - 23.0i)T^{2} \)
37 \( 1 + (8.71 - 5.66i)T + (15.0 - 33.8i)T^{2} \)
41 \( 1 + (-0.915 + 0.297i)T + (33.1 - 24.0i)T^{2} \)
43 \( 1 + (-1.12 - 1.12i)T + 43iT^{2} \)
47 \( 1 + (2.83 + 1.08i)T + (34.9 + 31.4i)T^{2} \)
53 \( 1 + (2.02 - 1.63i)T + (11.0 - 51.8i)T^{2} \)
59 \( 1 + (-7.12 + 7.91i)T + (-6.16 - 58.6i)T^{2} \)
61 \( 1 + (2.45 - 2.21i)T + (6.37 - 60.6i)T^{2} \)
67 \( 1 + (9.43 - 3.62i)T + (49.7 - 44.8i)T^{2} \)
71 \( 1 + (8.04 + 5.84i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (-4.79 + 7.38i)T + (-29.6 - 66.6i)T^{2} \)
79 \( 1 + (1.05 + 2.37i)T + (-52.8 + 58.7i)T^{2} \)
83 \( 1 + (1.33 - 8.45i)T + (-78.9 - 25.6i)T^{2} \)
89 \( 1 + (0.674 + 0.748i)T + (-9.30 + 88.5i)T^{2} \)
97 \( 1 + (0.741 + 4.68i)T + (-92.2 + 29.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.41876794189214417185383995263, −10.30124830942715594438784036194, −9.439065539568923616341818636695, −8.999126037797064157632379672796, −8.278643155069259374894065060126, −7.19815231601374129880081850138, −5.31855253140451390934483551187, −4.56709321680805958480838575526, −3.26472831510753440783104717022, −1.69983086488623658773176688762, 1.73265869238621453181025525095, 2.32912845900100912300511585387, 3.98894665677356725831723750465, 6.15474912026924843909793945143, 6.94007843958881858767041193686, 7.57690291486580197201668546026, 8.576291128818313741394188286520, 9.215578930586327234222043869042, 10.43765262582722713552873601346, 11.41943704911704369265004521780

Graph of the $Z$-function along the critical line