L(s) = 1 | + (−0.998 − 0.0523i)2-s + (0.194 + 0.239i)3-s + (0.994 + 0.104i)4-s + (2.09 + 0.786i)5-s + (−0.181 − 0.249i)6-s + (−1.59 − 2.11i)7-s + (−0.987 − 0.156i)8-s + (0.603 − 2.84i)9-s + (−2.04 − 0.894i)10-s + (3.14 − 0.668i)11-s + (0.168 + 0.258i)12-s + (0.507 + 0.258i)13-s + (1.48 + 2.19i)14-s + (0.217 + 0.654i)15-s + (0.978 + 0.207i)16-s + (−0.659 − 1.71i)17-s + ⋯ |
L(s) = 1 | + (−0.706 − 0.0370i)2-s + (0.112 + 0.138i)3-s + (0.497 + 0.0522i)4-s + (0.936 + 0.351i)5-s + (−0.0740 − 0.101i)6-s + (−0.603 − 0.797i)7-s + (−0.349 − 0.0553i)8-s + (0.201 − 0.947i)9-s + (−0.647 − 0.283i)10-s + (0.948 − 0.201i)11-s + (0.0485 + 0.0747i)12-s + (0.140 + 0.0717i)13-s + (0.396 + 0.585i)14-s + (0.0562 + 0.169i)15-s + (0.244 + 0.0519i)16-s + (−0.159 − 0.416i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.913 + 0.405i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.913 + 0.405i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.14358 - 0.242476i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.14358 - 0.242476i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.998 + 0.0523i)T \) |
| 5 | \( 1 + (-2.09 - 0.786i)T \) |
| 7 | \( 1 + (1.59 + 2.11i)T \) |
good | 3 | \( 1 + (-0.194 - 0.239i)T + (-0.623 + 2.93i)T^{2} \) |
| 11 | \( 1 + (-3.14 + 0.668i)T + (10.0 - 4.47i)T^{2} \) |
| 13 | \( 1 + (-0.507 - 0.258i)T + (7.64 + 10.5i)T^{2} \) |
| 17 | \( 1 + (0.659 + 1.71i)T + (-12.6 + 11.3i)T^{2} \) |
| 19 | \( 1 + (-0.151 - 1.43i)T + (-18.5 + 3.95i)T^{2} \) |
| 23 | \( 1 + (0.118 - 2.26i)T + (-22.8 - 2.40i)T^{2} \) |
| 29 | \( 1 + (-4.15 + 5.72i)T + (-8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (1.85 - 4.16i)T + (-20.7 - 23.0i)T^{2} \) |
| 37 | \( 1 + (-6.45 + 4.19i)T + (15.0 - 33.8i)T^{2} \) |
| 41 | \( 1 + (-8.64 + 2.80i)T + (33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + (-3.20 - 3.20i)T + 43iT^{2} \) |
| 47 | \( 1 + (9.10 + 3.49i)T + (34.9 + 31.4i)T^{2} \) |
| 53 | \( 1 + (7.23 - 5.86i)T + (11.0 - 51.8i)T^{2} \) |
| 59 | \( 1 + (5.10 - 5.67i)T + (-6.16 - 58.6i)T^{2} \) |
| 61 | \( 1 + (-0.562 + 0.506i)T + (6.37 - 60.6i)T^{2} \) |
| 67 | \( 1 + (5.42 - 2.08i)T + (49.7 - 44.8i)T^{2} \) |
| 71 | \( 1 + (8.84 + 6.42i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (6.29 - 9.69i)T + (-29.6 - 66.6i)T^{2} \) |
| 79 | \( 1 + (-3.38 - 7.60i)T + (-52.8 + 58.7i)T^{2} \) |
| 83 | \( 1 + (-1.85 + 11.6i)T + (-78.9 - 25.6i)T^{2} \) |
| 89 | \( 1 + (-6.03 - 6.69i)T + (-9.30 + 88.5i)T^{2} \) |
| 97 | \( 1 + (-0.349 - 2.20i)T + (-92.2 + 29.9i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.19597270084120127198905139060, −10.27760109531147228113985012668, −9.494802929584173727585430042789, −9.079149452171644534802430946281, −7.56999276964284175963420451161, −6.59025157248934306651476851710, −6.03658754519781680053883175718, −4.11957858250932266372968962564, −2.95405556000055448247513334986, −1.18362651448970390742369687286,
1.61922975316255656227003181161, 2.78009355836588842925765249891, 4.70962870058092293663332378102, 5.97971944839805580810519691707, 6.67008640783997104258053310840, 7.996265193439953381904528055320, 8.940678551475623568383241605737, 9.531646759647807745625853677696, 10.42504510331247137852893676519, 11.40733227112984648074750726845