Properties

Label 2-350-175.103-c1-0-16
Degree $2$
Conductor $350$
Sign $0.871 + 0.489i$
Analytic cond. $2.79476$
Root an. cond. $1.67175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.998 + 0.0523i)2-s + (0.449 + 0.554i)3-s + (0.994 + 0.104i)4-s + (−0.415 − 2.19i)5-s + (0.419 + 0.577i)6-s + (1.35 − 2.27i)7-s + (0.987 + 0.156i)8-s + (0.517 − 2.43i)9-s + (−0.299 − 2.21i)10-s + (−1.05 + 0.224i)11-s + (0.388 + 0.598i)12-s + (−2.33 − 1.18i)13-s + (1.47 − 2.19i)14-s + (1.03 − 1.21i)15-s + (0.978 + 0.207i)16-s + (2.67 + 6.97i)17-s + ⋯
L(s)  = 1  + (0.706 + 0.0370i)2-s + (0.259 + 0.320i)3-s + (0.497 + 0.0522i)4-s + (−0.185 − 0.982i)5-s + (0.171 + 0.235i)6-s + (0.513 − 0.858i)7-s + (0.349 + 0.0553i)8-s + (0.172 − 0.811i)9-s + (−0.0947 − 0.700i)10-s + (−0.319 + 0.0678i)11-s + (0.112 + 0.172i)12-s + (−0.646 − 0.329i)13-s + (0.394 − 0.587i)14-s + (0.266 − 0.314i)15-s + (0.244 + 0.0519i)16-s + (0.648 + 1.69i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.871 + 0.489i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.871 + 0.489i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $0.871 + 0.489i$
Analytic conductor: \(2.79476\)
Root analytic conductor: \(1.67175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{350} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 350,\ (\ :1/2),\ 0.871 + 0.489i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.09357 - 0.548002i\)
\(L(\frac12)\) \(\approx\) \(2.09357 - 0.548002i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.998 - 0.0523i)T \)
5 \( 1 + (0.415 + 2.19i)T \)
7 \( 1 + (-1.35 + 2.27i)T \)
good3 \( 1 + (-0.449 - 0.554i)T + (-0.623 + 2.93i)T^{2} \)
11 \( 1 + (1.05 - 0.224i)T + (10.0 - 4.47i)T^{2} \)
13 \( 1 + (2.33 + 1.18i)T + (7.64 + 10.5i)T^{2} \)
17 \( 1 + (-2.67 - 6.97i)T + (-12.6 + 11.3i)T^{2} \)
19 \( 1 + (-0.683 - 6.50i)T + (-18.5 + 3.95i)T^{2} \)
23 \( 1 + (0.00179 - 0.0341i)T + (-22.8 - 2.40i)T^{2} \)
29 \( 1 + (-4.62 + 6.37i)T + (-8.96 - 27.5i)T^{2} \)
31 \( 1 + (2.20 - 4.94i)T + (-20.7 - 23.0i)T^{2} \)
37 \( 1 + (2.08 - 1.35i)T + (15.0 - 33.8i)T^{2} \)
41 \( 1 + (7.29 - 2.36i)T + (33.1 - 24.0i)T^{2} \)
43 \( 1 + (-8.94 - 8.94i)T + 43iT^{2} \)
47 \( 1 + (7.97 + 3.06i)T + (34.9 + 31.4i)T^{2} \)
53 \( 1 + (1.35 - 1.09i)T + (11.0 - 51.8i)T^{2} \)
59 \( 1 + (-8.09 + 8.99i)T + (-6.16 - 58.6i)T^{2} \)
61 \( 1 + (-0.724 + 0.652i)T + (6.37 - 60.6i)T^{2} \)
67 \( 1 + (-7.37 + 2.82i)T + (49.7 - 44.8i)T^{2} \)
71 \( 1 + (5.21 + 3.78i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (3.45 - 5.32i)T + (-29.6 - 66.6i)T^{2} \)
79 \( 1 + (0.297 + 0.668i)T + (-52.8 + 58.7i)T^{2} \)
83 \( 1 + (0.974 - 6.15i)T + (-78.9 - 25.6i)T^{2} \)
89 \( 1 + (8.61 + 9.57i)T + (-9.30 + 88.5i)T^{2} \)
97 \( 1 + (-2.66 - 16.8i)T + (-92.2 + 29.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.67824738712189087117987641731, −10.34710203772734327721191931689, −9.835739561279259388879126429411, −8.306059377242555001796831662786, −7.85250220627566043054571864349, −6.42527675068838664087517674578, −5.29120484956296306566884131463, −4.26522905789728274716799218030, −3.52197433949675360165249853563, −1.44088631658273952017457609393, 2.30094375615831364743994095109, 2.95819138205187035276918693142, 4.74153954963894617334723714982, 5.47667467496319648480158450343, 7.03853636961427643264019625361, 7.37979381392601167935514218470, 8.648169238575190054220637992577, 9.863660963426877799453337588097, 10.95590152684710131923763155404, 11.59035071805579417820838707262

Graph of the $Z$-function along the critical line