Properties

Label 2-350-1.1-c5-0-5
Degree $2$
Conductor $350$
Sign $1$
Analytic cond. $56.1343$
Root an. cond. $7.49228$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 2.52·3-s + 16·4-s + 10.1·6-s + 49·7-s − 64·8-s − 236.·9-s − 267.·11-s − 40.4·12-s − 896.·13-s − 196·14-s + 256·16-s − 61.1·17-s + 946.·18-s + 1.62e3·19-s − 123.·21-s + 1.07e3·22-s + 4.28e3·23-s + 161.·24-s + 3.58e3·26-s + 1.21e3·27-s + 784·28-s − 7.42e3·29-s − 8.93e3·31-s − 1.02e3·32-s + 677.·33-s + 244.·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.162·3-s + 0.5·4-s + 0.114·6-s + 0.377·7-s − 0.353·8-s − 0.973·9-s − 0.667·11-s − 0.0811·12-s − 1.47·13-s − 0.267·14-s + 0.250·16-s − 0.0513·17-s + 0.688·18-s + 1.03·19-s − 0.0613·21-s + 0.471·22-s + 1.68·23-s + 0.0573·24-s + 1.03·26-s + 0.320·27-s + 0.188·28-s − 1.63·29-s − 1.67·31-s − 0.176·32-s + 0.108·33-s + 0.0363·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(56.1343\)
Root analytic conductor: \(7.49228\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 350,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.8726239107\)
\(L(\frac12)\) \(\approx\) \(0.8726239107\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
5 \( 1 \)
7 \( 1 - 49T \)
good3 \( 1 + 2.52T + 243T^{2} \)
11 \( 1 + 267.T + 1.61e5T^{2} \)
13 \( 1 + 896.T + 3.71e5T^{2} \)
17 \( 1 + 61.1T + 1.41e6T^{2} \)
19 \( 1 - 1.62e3T + 2.47e6T^{2} \)
23 \( 1 - 4.28e3T + 6.43e6T^{2} \)
29 \( 1 + 7.42e3T + 2.05e7T^{2} \)
31 \( 1 + 8.93e3T + 2.86e7T^{2} \)
37 \( 1 - 640.T + 6.93e7T^{2} \)
41 \( 1 - 3.87e3T + 1.15e8T^{2} \)
43 \( 1 - 1.97e4T + 1.47e8T^{2} \)
47 \( 1 + 2.06e3T + 2.29e8T^{2} \)
53 \( 1 + 1.97e4T + 4.18e8T^{2} \)
59 \( 1 - 4.64e4T + 7.14e8T^{2} \)
61 \( 1 + 5.39e4T + 8.44e8T^{2} \)
67 \( 1 - 4.46e4T + 1.35e9T^{2} \)
71 \( 1 + 5.05e4T + 1.80e9T^{2} \)
73 \( 1 - 2.40e4T + 2.07e9T^{2} \)
79 \( 1 - 1.99e3T + 3.07e9T^{2} \)
83 \( 1 - 5.05e4T + 3.93e9T^{2} \)
89 \( 1 - 6.03e4T + 5.58e9T^{2} \)
97 \( 1 - 1.21e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.81252226507216044774908645000, −9.545562058268836328979601409514, −8.979557837356359118952650746872, −7.68899614471290168864108519925, −7.24901748483705289097621979862, −5.69370182602562433079523799994, −5.00386198706595367086984655004, −3.18470245009348320806537757475, −2.14174020402757731799802499259, −0.54630923308262662775265383008, 0.54630923308262662775265383008, 2.14174020402757731799802499259, 3.18470245009348320806537757475, 5.00386198706595367086984655004, 5.69370182602562433079523799994, 7.24901748483705289097621979862, 7.68899614471290168864108519925, 8.979557837356359118952650746872, 9.545562058268836328979601409514, 10.81252226507216044774908645000

Graph of the $Z$-function along the critical line