L(s) = 1 | + 2-s − 3·3-s + 4-s − 3·6-s − 7-s + 8-s + 6·9-s − 5·11-s − 3·12-s − 6·13-s − 14-s + 16-s − 17-s + 6·18-s − 3·19-s + 3·21-s − 5·22-s − 3·24-s − 6·26-s − 9·27-s − 28-s − 6·29-s − 4·31-s + 32-s + 15·33-s − 34-s + 6·36-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.73·3-s + 1/2·4-s − 1.22·6-s − 0.377·7-s + 0.353·8-s + 2·9-s − 1.50·11-s − 0.866·12-s − 1.66·13-s − 0.267·14-s + 1/4·16-s − 0.242·17-s + 1.41·18-s − 0.688·19-s + 0.654·21-s − 1.06·22-s − 0.612·24-s − 1.17·26-s − 1.73·27-s − 0.188·28-s − 1.11·29-s − 0.718·31-s + 0.176·32-s + 2.61·33-s − 0.171·34-s + 36-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(350s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 5 | 1 |
| 7 | 1+T |
good | 3 | 1+pT+pT2 |
| 11 | 1+5T+pT2 |
| 13 | 1+6T+pT2 |
| 17 | 1+T+pT2 |
| 19 | 1+3T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1+4T+pT2 |
| 37 | 1−8T+pT2 |
| 41 | 1−11T+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1−2T+pT2 |
| 53 | 1−4T+pT2 |
| 59 | 1−4T+pT2 |
| 61 | 1+2T+pT2 |
| 67 | 1−9T+pT2 |
| 71 | 1+10T+pT2 |
| 73 | 1+7T+pT2 |
| 79 | 1+2T+pT2 |
| 83 | 1−11T+pT2 |
| 89 | 1+11T+pT2 |
| 97 | 1+10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.11858258197447904087693203763, −10.45494407305386764464659959764, −9.627920882288908715420031969238, −7.70054391482804408966188304160, −6.95538626651508714624591948210, −5.84573096199937208498827543184, −5.20618442524944639616146822933, −4.32124854619714589271574708665, −2.44905781159727834481891285350, 0,
2.44905781159727834481891285350, 4.32124854619714589271574708665, 5.20618442524944639616146822933, 5.84573096199937208498827543184, 6.95538626651508714624591948210, 7.70054391482804408966188304160, 9.627920882288908715420031969238, 10.45494407305386764464659959764, 11.11858258197447904087693203763