L(s) = 1 | + (−1 + i)2-s + (1.58 − 1.58i)3-s + (−1.58 + 1.58i)5-s + 3.16i·6-s + (−0.581 − 2.58i)7-s + (−2 − 2i)8-s − 2.00i·9-s − 3.16i·10-s − 11-s + (−1.58 + 1.58i)13-s + (3.16 + 2i)14-s + 5.00i·15-s + 4·16-s + (1.58 + 1.58i)17-s + (2.00 + 2.00i)18-s + 3.16·19-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s + (0.912 − 0.912i)3-s + (−0.707 + 0.707i)5-s + 1.29i·6-s + (−0.219 − 0.975i)7-s + (−0.707 − 0.707i)8-s − 0.666i·9-s − 1.00i·10-s − 0.301·11-s + (−0.438 + 0.438i)13-s + (0.845 + 0.534i)14-s + 1.29i·15-s + 16-s + (0.383 + 0.383i)17-s + (0.471 + 0.471i)18-s + 0.725·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.899 - 0.437i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.899 - 0.437i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.598865 + 0.138099i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.598865 + 0.138099i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (1.58 - 1.58i)T \) |
| 7 | \( 1 + (0.581 + 2.58i)T \) |
good | 2 | \( 1 + (1 - i)T - 2iT^{2} \) |
| 3 | \( 1 + (-1.58 + 1.58i)T - 3iT^{2} \) |
| 11 | \( 1 + T + 11T^{2} \) |
| 13 | \( 1 + (1.58 - 1.58i)T - 13iT^{2} \) |
| 17 | \( 1 + (-1.58 - 1.58i)T + 17iT^{2} \) |
| 19 | \( 1 - 3.16T + 19T^{2} \) |
| 23 | \( 1 + (-2 - 2i)T + 23iT^{2} \) |
| 29 | \( 1 + 3iT - 29T^{2} \) |
| 31 | \( 1 - 3.16iT - 31T^{2} \) |
| 37 | \( 1 + (6 - 6i)T - 37iT^{2} \) |
| 41 | \( 1 + 9.48iT - 41T^{2} \) |
| 43 | \( 1 + (3 + 3i)T + 43iT^{2} \) |
| 47 | \( 1 + (4.74 + 4.74i)T + 47iT^{2} \) |
| 53 | \( 1 + (-1 - i)T + 53iT^{2} \) |
| 59 | \( 1 - 9.48T + 59T^{2} \) |
| 61 | \( 1 - 6.32iT - 61T^{2} \) |
| 67 | \( 1 + (1 - i)T - 67iT^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 - 73iT^{2} \) |
| 79 | \( 1 + 13iT - 79T^{2} \) |
| 83 | \( 1 + (3.16 - 3.16i)T - 83iT^{2} \) |
| 89 | \( 1 + 6.32T + 89T^{2} \) |
| 97 | \( 1 + (1.58 + 1.58i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.76343872893160696850716555329, −15.59295056623720037119251875678, −14.40286705303137546668344750123, −13.33715942497471909432425137471, −11.98832914484567149905474922867, −10.16812235815551413298297690346, −8.524147519473872321912538499874, −7.45845671624323933270033329055, −6.94729152762131401251943129619, −3.37951316042159346516949348695,
3.02738172602077541111222636184, 5.16726999488233885655867866114, 8.175085457484967238510962436060, 9.126247062444299222986819673632, 9.920579216029164867063356025505, 11.45229553346159824489309456196, 12.60739506476101158876973833850, 14.54109240612487208068165637664, 15.36140843477250342964506579862, 16.29056604287506629782510411258