L(s) = 1 | + 28·2-s − 116·3-s + 272·4-s + 625·5-s − 3.24e3·6-s + 2.40e3·7-s − 6.72e3·8-s − 6.22e3·9-s + 1.75e4·10-s − 2.55e4·11-s − 3.15e4·12-s − 4.23e4·13-s + 6.72e4·14-s − 7.25e4·15-s − 3.27e5·16-s − 5.26e5·17-s − 1.74e5·18-s − 3.50e5·19-s + 1.70e5·20-s − 2.78e5·21-s − 7.15e5·22-s − 6.21e5·23-s + 7.79e5·24-s + 3.90e5·25-s − 1.18e6·26-s + 3.00e6·27-s + 6.53e5·28-s + ⋯ |
L(s) = 1 | + 1.23·2-s − 0.826·3-s + 0.531·4-s + 0.447·5-s − 1.02·6-s + 0.377·7-s − 0.580·8-s − 0.316·9-s + 0.553·10-s − 0.526·11-s − 0.439·12-s − 0.410·13-s + 0.467·14-s − 0.369·15-s − 1.24·16-s − 1.52·17-s − 0.391·18-s − 0.616·19-s + 0.237·20-s − 0.312·21-s − 0.651·22-s − 0.463·23-s + 0.479·24-s + 1/5·25-s − 0.508·26-s + 1.08·27-s + 0.200·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(5)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{11}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 - p^{4} T \) |
| 7 | \( 1 - p^{4} T \) |
good | 2 | \( 1 - 7 p^{2} T + p^{9} T^{2} \) |
| 3 | \( 1 + 116 T + p^{9} T^{2} \) |
| 11 | \( 1 + 25548 T + p^{9} T^{2} \) |
| 13 | \( 1 + 42306 T + p^{9} T^{2} \) |
| 17 | \( 1 + 526342 T + p^{9} T^{2} \) |
| 19 | \( 1 + 350060 T + p^{9} T^{2} \) |
| 23 | \( 1 + 621976 T + p^{9} T^{2} \) |
| 29 | \( 1 - 6720430 T + p^{9} T^{2} \) |
| 31 | \( 1 + 6412208 T + p^{9} T^{2} \) |
| 37 | \( 1 + 2317682 T + p^{9} T^{2} \) |
| 41 | \( 1 + 10224678 T + p^{9} T^{2} \) |
| 43 | \( 1 - 30114004 T + p^{9} T^{2} \) |
| 47 | \( 1 + 23644912 T + p^{9} T^{2} \) |
| 53 | \( 1 - 57292654 T + p^{9} T^{2} \) |
| 59 | \( 1 - 84934780 T + p^{9} T^{2} \) |
| 61 | \( 1 - 14677822 T + p^{9} T^{2} \) |
| 67 | \( 1 + 244557812 T + p^{9} T^{2} \) |
| 71 | \( 1 - 61901952 T + p^{9} T^{2} \) |
| 73 | \( 1 + 283763726 T + p^{9} T^{2} \) |
| 79 | \( 1 - 276107480 T + p^{9} T^{2} \) |
| 83 | \( 1 + 72995956 T + p^{9} T^{2} \) |
| 89 | \( 1 + 896368470 T + p^{9} T^{2} \) |
| 97 | \( 1 - 1205809578 T + p^{9} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.82706994463753367755988528351, −12.77780797516303524791171987966, −11.71522569981137308570261655711, −10.60093104081596524156837200727, −8.757475580146295307777216922596, −6.60214279484499050801103175578, −5.49379448429270748142859265401, −4.47552726515895085107292806570, −2.48792095993394324947306954592, 0,
2.48792095993394324947306954592, 4.47552726515895085107292806570, 5.49379448429270748142859265401, 6.60214279484499050801103175578, 8.757475580146295307777216922596, 10.60093104081596524156837200727, 11.71522569981137308570261655711, 12.77780797516303524791171987966, 13.82706994463753367755988528351