L(s) = 1 | + (−1 − i)3-s + (2 + 2i)5-s + (3 − 3i)7-s − i·9-s + (−1 + i)11-s + 4·13-s − 4i·15-s − 4i·19-s − 6·21-s + (−1 + i)23-s + 3i·25-s + (−4 + 4i)27-s + (2 + 2i)29-s + (−3 − 3i)31-s + 2·33-s + ⋯ |
L(s) = 1 | + (−0.577 − 0.577i)3-s + (0.894 + 0.894i)5-s + (1.13 − 1.13i)7-s − 0.333i·9-s + (−0.301 + 0.301i)11-s + 1.10·13-s − 1.03i·15-s − 0.917i·19-s − 1.30·21-s + (−0.208 + 0.208i)23-s + 0.600i·25-s + (−0.769 + 0.769i)27-s + (0.371 + 0.371i)29-s + (−0.538 − 0.538i)31-s + 0.348·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.615 + 0.788i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.615 + 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.820500559\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.820500559\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (1 + i)T + 3iT^{2} \) |
| 5 | \( 1 + (-2 - 2i)T + 5iT^{2} \) |
| 7 | \( 1 + (-3 + 3i)T - 7iT^{2} \) |
| 11 | \( 1 + (1 - i)T - 11iT^{2} \) |
| 13 | \( 1 - 4T + 13T^{2} \) |
| 19 | \( 1 + 4iT - 19T^{2} \) |
| 23 | \( 1 + (1 - i)T - 23iT^{2} \) |
| 29 | \( 1 + (-2 - 2i)T + 29iT^{2} \) |
| 31 | \( 1 + (3 + 3i)T + 31iT^{2} \) |
| 37 | \( 1 + (-6 - 6i)T + 37iT^{2} \) |
| 41 | \( 1 + (8 - 8i)T - 41iT^{2} \) |
| 43 | \( 1 + 8iT - 43T^{2} \) |
| 47 | \( 1 - 12T + 47T^{2} \) |
| 53 | \( 1 + 6iT - 53T^{2} \) |
| 59 | \( 1 - 59T^{2} \) |
| 61 | \( 1 + (-6 + 6i)T - 61iT^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 + (5 + 5i)T + 71iT^{2} \) |
| 73 | \( 1 + 73iT^{2} \) |
| 79 | \( 1 + (-3 + 3i)T - 79iT^{2} \) |
| 83 | \( 1 - 83T^{2} \) |
| 89 | \( 1 + 12T + 89T^{2} \) |
| 97 | \( 1 + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.931979552080769411439042762986, −8.828052875756047015576655678111, −7.81066282092093893267839798305, −7.01820946134305332471348993384, −6.46257568915487141673421575032, −5.60381847827298744649913725524, −4.55888506322955564745696996036, −3.41642850413149127535818034084, −2.01937244434487226952525971886, −0.984770350853152802725314585194,
1.40500415511239885629965112496, 2.36729674606395693519591252536, 4.06980698066778627151158442849, 4.99009607468445781029915441357, 5.69746051974915816635084096464, 5.93644729030465536165531618144, 7.67520804056004728719674492580, 8.563288158967104184643713485430, 8.920610599311070001035724528878, 9.977266457117249476514702139060