L(s) = 1 | + (0.5 − 0.866i)11-s − 1.73i·17-s + 1.73i·19-s + (0.5 − 0.866i)25-s + (1.5 − 0.866i)41-s + (−1.5 − 0.866i)43-s + (0.5 + 0.866i)49-s + (−0.5 − 0.866i)59-s + (1.5 − 0.866i)67-s + 73-s + (−1 + 1.73i)83-s + (0.5 − 0.866i)97-s + 107-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)11-s − 1.73i·17-s + 1.73i·19-s + (0.5 − 0.866i)25-s + (1.5 − 0.866i)41-s + (−1.5 − 0.866i)43-s + (0.5 + 0.866i)49-s + (−0.5 − 0.866i)59-s + (1.5 − 0.866i)67-s + 73-s + (−1 + 1.73i)83-s + (0.5 − 0.866i)97-s + 107-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.279485121\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.279485121\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + 1.73iT - T^{2} \) |
| 19 | \( 1 - 1.73iT - T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.644213469869758570584450855969, −8.012819231601090095670454982113, −7.20826179708431050066878284245, −6.42882437727807195683798929457, −5.70858645527314271573276314159, −4.93516927243995895086733339835, −3.94520322877779860275487980809, −3.20518936043917020134117598956, −2.18250585481861927429406102290, −0.854048411930490116078026361986,
1.30407242906896992380656306589, 2.32506809525869714113412386919, 3.38214824166295899304454607174, 4.30108289089354573342380617247, 4.93509740784691288423472396360, 5.93489005047980114802776955175, 6.69939018977804379355384846298, 7.26296576700805143653596249239, 8.175273085706973576322406737780, 8.866730220431212700517573639702