| L(s) = 1 | + (−0.158 − 0.275i)5-s + (−2.93 − 1.69i)7-s + (−0.642 − 0.370i)11-s + (2.59 − 1.5i)13-s − 4.24i·17-s − 2.57·19-s + (2.02 + 3.50i)23-s + (2.44 − 4.24i)25-s + (−4.01 + 6.94i)29-s + (−4.24 + 2.45i)31-s + 1.07i·35-s − 7.34i·37-s + (0.825 − 0.476i)41-s + (3.50 − 6.06i)43-s + (−5.15 + 8.93i)47-s + ⋯ |
| L(s) = 1 | + (−0.0710 − 0.123i)5-s + (−1.10 − 0.639i)7-s + (−0.193 − 0.111i)11-s + (0.720 − 0.416i)13-s − 1.02i·17-s − 0.589·19-s + (0.421 + 0.730i)23-s + (0.489 − 0.848i)25-s + (−0.745 + 1.29i)29-s + (−0.762 + 0.440i)31-s + 0.181i·35-s − 1.20i·37-s + (0.128 − 0.0744i)41-s + (0.533 − 0.924i)43-s + (−0.752 + 1.30i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.885 - 0.463i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.885 - 0.463i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.08189068921\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.08189068921\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (0.158 + 0.275i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (2.93 + 1.69i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.642 + 0.370i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.59 + 1.5i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 4.24iT - 17T^{2} \) |
| 19 | \( 1 + 2.57T + 19T^{2} \) |
| 23 | \( 1 + (-2.02 - 3.50i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.01 - 6.94i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.24 - 2.45i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 7.34iT - 37T^{2} \) |
| 41 | \( 1 + (-0.825 + 0.476i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.50 + 6.06i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (5.15 - 8.93i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 5.51T + 53T^{2} \) |
| 59 | \( 1 + (-3.50 + 2.02i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.79 - 4.5i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.36 - 11.0i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 13.5T + 71T^{2} \) |
| 73 | \( 1 + 6.44T + 73T^{2} \) |
| 79 | \( 1 + (8.29 + 4.78i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.21 - 1.27i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 14.6iT - 89T^{2} \) |
| 97 | \( 1 + (5.62 - 9.74i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.187301669036470475413654675591, −7.19656176376983454708710475747, −6.88562226244584000850218106650, −5.87381767940694708722929569922, −5.22383728438458552310379001608, −4.12348742683439651550907552334, −3.43744100854098190424442703891, −2.64628711943567420848483303114, −1.18788184378151955144263686771, −0.02577912477696783202301623509,
1.64146383304917320874383614272, 2.67691303065127173653460978225, 3.52670521493878087154014051531, 4.28258690406614719342830465382, 5.37200251575211611018707001268, 6.24715587192045499718564134004, 6.51209618882841265294135844121, 7.54251532569719163681247578889, 8.417236722829965483725266347301, 8.961257483862904219095728356812