L(s) = 1 | − 1.41i·5-s + 7-s − 1.41i·11-s − 13-s + 1.41i·17-s + 19-s − 1.41i·23-s − 1.00·25-s − 1.41i·35-s + 37-s − 1.41i·47-s − 2.00·55-s + 1.41i·59-s − 61-s + 1.41i·65-s + ⋯ |
L(s) = 1 | − 1.41i·5-s + 7-s − 1.41i·11-s − 13-s + 1.41i·17-s + 19-s − 1.41i·23-s − 1.00·25-s − 1.41i·35-s + 37-s − 1.41i·47-s − 2.00·55-s + 1.41i·59-s − 61-s + 1.41i·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.331435744\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.331435744\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 1.41iT - T^{2} \) |
| 7 | \( 1 - T + T^{2} \) |
| 11 | \( 1 + 1.41iT - T^{2} \) |
| 13 | \( 1 + T + T^{2} \) |
| 17 | \( 1 - 1.41iT - T^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( 1 + 1.41iT - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + 1.41iT - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - 1.41iT - T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 + T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 + T + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - 1.41iT - T^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.504661437052334617949924525133, −8.127191775113809539677968091454, −7.30279783871197194502179649900, −6.07871793938526732977681027151, −5.52614169383465781048738872582, −4.73058438806257099111888522893, −4.19431923490939779961033756969, −2.99505709305496921544176677316, −1.77977260657371495255769302935, −0.820625848993297335438048596796,
1.63741105153317875961976214680, 2.57215451222796509609759778988, 3.25136025628516738698310533741, 4.55819348057348127226940896151, 4.99084780852044092518870240774, 5.99882362863376641276376157357, 7.04657764784122286639101842200, 7.51593236583452666711276114846, 7.70298054382432092337500119961, 9.208827406886125610736311253592